Министерство образования и науки Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования «УРАЛЬСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ имени первого Президента России Б.Н. Ельцина» ИНСТИТУТ ЕСТЕСТВЕННЫХ НАУК И МАТЕМАТИКИ

На правах рукописи

Пестерева Наталья Николаевна

02.00.21 — Химия твёрдого тела

Диссертация на соискание ученой степени кандидата химических наук

> Научный руководитель: доктор химических наук, профессор Уваров Николай Фавстович

Я завершила этот научный труд в память моего учителя, доктора химических наук, профессора

НЕЙМАНА АРКАДИЯ ЯКОВЛЕВИЧА

Оглавление

Список обозначений	5
Введение	6
ГЛАВА 1. Литературный обзор	13
1.1 Физико-химические свойства фаз систем MeWO ₄ -WO ₃	13
1.2 Реакционные и транспортные процессы с участием MeWO ₄ и WO ₃	15
1.3 Данные по самодиффузии и транспортным свойствам вольфраматов, молибдатов	
оксида вольфрама	
1.3.1 Самодиффузия катионов в MeWO ₄	
1.3.2 Зависимость транспортных свойств от морфологии образцов MeWO ₄	
1.3.3 Транспортные свойства шеелитов	
1.3.4 Данные последних лет по специфическим аспектам электро- и массоперенос	
керамике и монокристаллах соединений с шеелитоподобной структурой	24
Постановка задачи исследования	27
ГЛАВА 2. Экспериментальная часть	28
2.1. Синтез керамических образцов	28
2.2 Методы исследования	32
2.2.1 Метод электроповерхностного переноса	
2.2.2 Методика измерения электропроводности	
2.2.3 Исследование влияния давления кислорода (P _{O2}) на электропроводность	
2.2.4 Измерения чисел переноса по методу ЭДС	
2.2.5 Методика опытов по Тубандту	
2.2.6 Рентгенофазовый анализ (РФА)	37
2.2.7 Рентгенофлуоресцентный анализ (РФЛА)	
2.2.8 Электронная спектроскопия для химического анализа (ЭСХА)	38
2.2.9 Эмиссионная спектроскопия тлеющего разряда (ЭСТР)	
2.2.10 Микроскопический анализ	38
2.2.11 Очистка границ зёрен MeWO ₄ от WO ₃	39
ГЛАВА 3. Электропроводность и траспортные свойства MeWO ₄ , WO ₃ и композ	зитных
систем на их основе	
3.1. Электропроводность и транспортные свойства MeWO ₄ и WO ₃	
3.1.1. Вольфраматы MeWO ₄ (Me – Ca, Sr, Ba)	40
3.1.2. WO ₃	45
3.2. Общая проводимость и числа переноса ионов в композитах MeWO ₄ -WO ₃ ,	
(Me = Ca, Sr, Ba)	
3.2.1. Зависимость общей электропроводности керамики композитов от температу	
3.2.2. Числа переноса композитов, полученные методом ЭДС	50

3.2.2. Температурные зависимости чисел переноса носителей заряда	50
3.3. Ионная проводимость композитов $(1-x)$ MeWO ₄ $-x$ WO ₃ , (Me = Ca, Sr, Ba)	
3.3.1. Композиты (1- <i>x</i>)CaWO ₄ - <i>x</i> WO ₃	
3.3.2. Композиты $(1-x)$ MeWO ₄ $-x$ WO ₃ (Me = Sr, Ba)	56
3.3.3. Концентрационные зависимости ионной проводимости композитов	
(1-x)MeWO ₄ - x WO ₃ (Me = Ca, Sr, Ba)	57
Выводы по главе 3	59
ГЛАВА 4. Природа ионного переноса в вольфраматах MeWO ₄ (Me - Ca, Sr, Ba) по метода Тубандта	
4.1. Возможные схемы процессов, происходящих при электролизе вольфраматов	60
4.2. Анализ экспериментальных результатов	63
Выводы по главе 4	71
ГЛ АВА 5. Исследование электроповерхностного переноса в системах WO ₃ - MeV = Ca, Sr, Ba)	
5.1. Механизм процессов, протекающих на границе раздела WO ₃ MeWO ₄ (Me – Ca	
5.2. Обратимость электроповерхностного переноса	89
Выводы по главе 5	93
Заключение	95
Список литературы	97

Список обозначений

 PO_2 парциальное давление кислорода число переноса ионов t_{uoh} to^{2-} число переноса ионов кислорода t_e число переноса электронов ионная электропроводность $\sigma_{\text{ион}}$ электронная электропроводность \mathbf{E}_a энергия активации общей электропроводности E_{uoh} энергия активации ионной электропроводности α поверхностная энергия РФА рентгенофазовый анализ РФЛА рентгенофлюоресцентный анализ ЭСХА электронная спектроскопия для химического анализа ЭСТР эмиссионная спектроскопия тлеющего разряда об.% объемные проценты мол.% мольные проценты К.Ч. координационное число T температура универсальная газовая постоянная, 8,3144598(48) Дж \cdot моль $^{-1}\cdot$ К $^{-1}$ R F постоянная Фарадея, 96485 Кл-моль СЭМ сканирующая электронная микроскопия ЭДА энерго-дисперсионный анализ ЩЗМ щелочноземельный металл Me металл

Введение

Вольфраматы щелочноземельных металлов являются важными и интересными объектами исследования физической химии твердого тела. История изучения этих соединений начинается с минерала природного происхождения – шеелита – CaWO₄. Будучи структурно более сложными, по сравнению с бинарными изодесмическими соединениями, шеелит CaWO₄ и его структурные аналоги, MeWO₄ (Me = Sr, Ba), проявляют ряд необычных свойств.

Шеелит CaWO₄ является уникальным рентгенолюминофором, первым представителем широкого класса соединений, обладающих подобными свойствами. Впервые рентгенолюминесцентные свойства, позволившие использовать CaWO₄ в данном качестве, были обнаружены французским физиком Антуаном Анри Беккерелем (Henri Becquerel) в 1896 году. С тех пор и до наших дней шеелит применяется в рентгенодиагностике человека, благодаря уникальным характеристикам, технологичности и малой стоимости его производных.

В последующие годы с помощью допирования CaWO₄ ионами редкоземельных металлов в катионной подрешетке был разработан широкий ряд лазерных материалов, обладающих низким порогом генерации и относительно высоким квантовым выходом (КПД лазерной генерации) [1-4].

Вышесказанное относится и к современному периоду практического применения вольфраматов $MeWO_4$ (Me – Ca, Sr, Ba), допированных катионами лантана. В частности, на основе $SrWO_4$ и $BaWO_4$, допированных катионами Nd^{3+} , созданы эффективные лазеры нового типа, использующие эффект вынужденного комбинационного рассеяния света [5-7].

Таким образом, соединения со структурой шеелита CaWO₄, SrWO₄, BaWO₄ и их допированные аналоги оказались одними из наиболее эффективных лазерных материалов [1-7]. К настоящему времени создано множество кристаллических матриц, обладающих разнообразием спектрально-

Наиболее эффективными генерационных свойств. ИЗ них остаются допированные редкоземельными металлами кристаллы Y₃Al₅O₁₂ и YAlO₃ [8-Общим свойством этих материалов являются большая ширина запрещённой зоны, стойкость к внешнему радиационному воздействию и высокая теплопроводность. В последние годы успешно развивается новое направление – разработка и производство керамических лазерных матриц. Данный аспект, безусловно, перспективным, благодаря окажется фундаментальным исследованиям, ранее осуществленным в работах [11-13].

Однако природа и характер проводимости материалов со структурой шеелита оставались практически не изученными. Первая информация о необычных свойствах вольфрамата транспортных кальция опубликована в классических работах В. Яндера [14,15]. Изучая реакции WO₃ с MeCO₃ или MeO (Me – Ca, Sr, Ba) методами РФА и оптической микроскопии, В. Яндер, пришел к необычному выводу, что все подобные реакции развиваются путём «разбегания или твердофазного растекания» $(T\Phi P)$ молекул WO_3 по поверхности $MeCO_3$ (MeO). Это заключение далее было подтверждено в работе [11]. Отметим, что если эффект ТФР в металлических и силикатных системах подробно и детально исследовался П.П. Аносовым, Н.Н. Бекетовым и Д.К. Черновым, то для оксидных систем, он был отмечен впервые и его механизм до сих пор остается недостаточно изученным. Несмотря на это, технологии, основанные на твердофазном растекании, стали в настоящее время едва ли не основными для получения нанесённых катализаторов самого широкого назначения [16,17].

Результаты, полученные изотопными методами [18],надёжно подтверждают межкристаллитный, межзёренный механизм переноса WO₃ по внутренней поверхности MeWO₄, образующегося в ходе твердофазных реакций типа MeO+WO₃→MeWO₄ и при безреакционном переносе WO₃ в керамику MeWO₄. Поэтому, влияние морфологии исследуемых моно- и керамических образцов на транспортные свойства CaWO₄ требует отдельного анализа и исследования.

В 1985 году учеными УрГУ под руководством А.Я. Неймана, были получены результаты по влиянию электрического поля на транспортные свойства ячеек на основе «шеелитовых систем» WO_3 | MeO и WO_3 | MeWO₄. Было обнаружено, что наложение электрического поля малой напряжённости на ячейку (-/+) WO_3 | MeO(+/-) резко ускоряет скорость образования MeWO₄, а величина выхода продукта по току значительно превосходит значение, рассчитанное по закону Фарадея. При пропускании тока через формально нереакционную, эвтектическую ячейку (-) WO_3 | $CaWO_4$ (+) происходит втягивание WO_3 на внутреннюю поверхность керамики вольфрамата, на которой образуется композит (100-x) $CaWO_4-xWO_3$, в котором величина x достигает 20 мол.%. Этот, неизвестный ранее эффект, был назван электроповерхностным переносом (ЭПП). Фарадеевская эффективность ЭПП достигала 100% [19].

На момент начала настоящего исследования механизм большинства обнаруженных явлений оставался неизвестным. В продолжение указанных исследований, нами был проведен ряд экспериментов и получены новые результаты, подробно изложенные в данной диссертационной работе. В частности, было обнаружено, что добавка WO_3 к керамике $MeWO_4$ (Me = Ca, Sr, Ba) в количестве $x \le 1$ мол.% вызывает резкий рост проводимости в 15-20 раз, а при x = 20 моль% электропроводность близка к чисто ионной. Поскольку, оба компонента композита не являются ионными проводниками, то данный эффект был назван нами «метакомпозитным» эффектом [20]. Здесь важно отметить, что изученные в литературе композитные системы [21-27] относились к классам «соль | ионный кристалл», «соль | соль», «соль | диэлектрик». Подобным явлениям было дано общее наименование – «гетерофазное допирование» [28], однако при этом не рассматривались системы типа «полупроводник - диэлектрик». В настоящей диссертационной работе представлены результаты детальных исследований транспортных процессов, с акцентом на изучение природы носителей заряда в керамике MeWO₄ приповерхностных областях эвтектической системы

«диэлектрик—полупроводник» $MeWO_4$ — WO_3 (Me = Ca, Sr, Ba), а так же изучение необычных свойств композитных фаз.

Работа выполнялась при финансовой поддержке РФФИ, проекты № 04-03-32614-а; 06-03-90170-ННФ-а; 08-03-00144-а; 11-03-01209-а, 13-03-96114-р_урал_а, а также при поддержке Минобрнауки РФ 2013-2016, ФЦП «Научные и научно-педагогические кадры инновационной России на 2009 – 2013 годы», «Развитие научного потенциала Высшей школы 2009 – 2010», конкурса на проведение научно-исследовательских работ «Конкурс молодых учёных УрФУ - 2011», гранта Минобразования РФ для поддержки научно-исследовательской работы аспирантов ВУЗов (по специальности «Неорганическая химия 2003 г.»)

Цель работы: Детальное исследование транспортных процессов, изучение природы носителей заряда в керамических образцах вольфраматов MeWO₄, на границе раздела фаз в системах «диэлектрик-полупроводник» $MeWO_4-WO_3$ (Me = Ca, Sr, Ba), а также изучение необычных свойств указанных композитов.

Задачи диссертационной работы:

- комплексное изучение транспортных свойств керамических образцов MeWO₄, включающее исследование общей и парциальной ионной проводимости с использованием метода электрохимического импеданса, измерения ЭДС концентрационных ячеек, анализа зависимостей проводимости от температуры и активности кислорода в газовой фазе;
- систематическое исследование состава, природы и подвижности носителей заряда в индивидуальных вольфраматах и композитах на их основе с использованием метода Тубандта. Применение данного метода является отличительной чертой настоящей работы;
- исследование транспортных свойств нового класса твердых электролитов
 метакомпозитов, образующихся в смеси диэлектрика (MeWO₄) и полупроводника (WO₃);

- установление механизма электро- и массопереноса в системах $MeWO_4-WO_3$ в экспериментах по электроповерхностному переносу, проведенных в специальных условиях.

Научная новизна работы заключается в следующем:

- впервые проведено систематическое исследование транспортных и физикохимических свойств бинарных систем $MeWO_4$ - WO_3 (Me = Ca, Sr, Ba);
- впервые методом ЭДС кислородно-воздушного гальванического элемента в области температур $600-900^{\circ}$ С определены числа переноса ионов в вольфраматах щелочноземельных металлов $MeWO_4$ и в композитах $MeWO_4$ – WO_3 ;
- впервые, методом Тубандта определен тип носителей заряда и массы в керамике вольфраматов MeWO₄;
- впервые подробно изучено явление электроповерхностного переноса WO_3 в твердофазных системах $MeWO_4$ – WO_3 (Me=Ca,Sr,Ba). Обнаружено, что электроповерхностный перенос WO_3 на внутреннюю поверхность вольфраматов щелочноземельных металлов является обратимым процессом.

Практическая значимость работы:

Интерес к изучению подобных нетривиальных, формально нереакционных процессов вызван рядом причин. При работе реального электрохимического устройства (электролизер, датчик активности) возникает множество новых гетерофазных границ и взаимных поверхностных фаз, процессы на которых могут значительно сказываться на функциональных параметрах устройства. Системы MeWO₄–WO₃ обладают высокой ионной проводимостью по ионам кислорода и при соответствующей доработке могут быть принципиально доведены до уровня практического применения, что так же требует детального изучения процессов, сопровождающих их эксплуатацию. Эффект обратимости электроповерхностной миграции в ячейках типа

(-/+) MeWO₄ | WO₃(+/-) может быть использован для создания высокотемпературных электрохромных или других твердотельных

электрохимических устройств с электродными материалами на основе вольфрамовых бронз.

На защиту выносится:

- эффект резкого увеличения электропроводности при гетерогенном допировании вольфраматов щелочноземельных металлов MeWO₄ (Me = Ca, Sr, Ba) оксидом вольфрама;
- определение типа носителей тока, обуславливающих процессы электро- и массопереноса в вольфраматах $MeWO_4$ и композитах $MeWO_4$ – WO_3 (Me = Ca, Sr, Ba):
- интерпретация процессов, происходящих под воздействием электрического поля на границе раздела $MeWO_4 \mid WO_3$ (Me = Ca, Sr, Ba).

Апробация работы. Основное содержание работы опубликовано в 11 статьях, из которых 9 статей — в журналах, индексируемых в международных базах данных и входящих в список ВАК, и в 22 тезисах докладов и материалах всероссийских и международных конференций.

Результаты работы докладывались на VII, VIII, IX, X Международном совещании «Фундаментальные проблемы твердого ионики тела» (г. Черноголовка, 2004, 2006, 2010 гг.); XII,XII,XV Российской научной конференции по физической химии и электрохимии расплавленных и твердых электролитов (г. Екатеринбург, ИВТЭ УрО РАН, 2004, 2010 гг.); 15th International Conference on Solid State Ionics (Baden-Baden, Germany, 2005); на шестом и восьмом семинаре СО РАН-УрО РАН «Термодинамика и материаловедение» (г. Екатеринбург, 2006, 2012); 8th International Symposium on Systems with Fast Ionic Transport (Vilnius. Lithuania, 2007); International Europian Solid State Conference (Munster, Germany, 2009); International conference Solid state chemistry (Prague, 2010); IV Всероссийской конференции по наноматериалам: Нано-2011 (Москва-2011); Solid State Ionics 16: Proceedings of the 16th International Conference on Solid State Ionics (SSI-16), (Shanghai, China 2007).

Личный вклад соискателя. Все результаты, приведенные в диссертации, получены автором лично или при ее непосредственном участии. Автором выполнены синтез керамических образцов, исследование их электротранспортных свойств различными методами и математическая обработка полученных результатов. Автор принимала участие в электронномикроскопических исследованиях, проводимых в центре коллективного пользования ИЕНиМ УрФУ. Анализ и обсуждение полученных результатов проводились совместно с научными руководителями д.х.н. Нейманом А.Я. и д.х.н. Уваровым Н.Ф. Соискатель принимала непосредственное участие в подготовке и оформлении научных публикаций.

Публикации. По материалам диссертации опубликовано 9 статей в журналах, рекомендованных ВАК, 2 статьи в других научных журналах и 22 тезисов докладов на международных и российских конференциях.

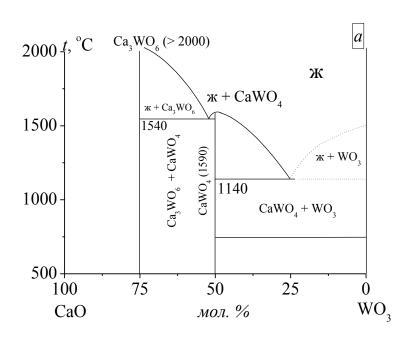
Структура и объем диссертации. Диссертационная работа состоит из введения, пяти глав, выводов, списка цитируемой литературы. Материал изложен на 105 страницах и содержит 45 рисунков, 6 таблиц и список литературы из 82 наименований.

Глава 1. Литературный обзор

1.1 Физико-химические свойства фаз систем MeWO₄-WO₃

Объектами исследования настоящей работы являются системы на основе вольфраматов щелочноземельных металлов и триоксида вольфрама. Поэтому, прежде всего, необходимо описать основные физико-химические характеристики этих соединений и фаз, образующихся в системах MeWO₄-WO₃.

Все вольфраматы ЩЗМ характеризуются кристаллической структурой шеелита (тетрагональная сингония, пространственная группа I41/a), образованной островковыми анионами WO_4^{2-} и катионами ЩЗМ. Энергия связи W-O (610 кДж/моль) в несколько раз выше, чем энергия связи Ме-O (130 кДж/моль); связь Ме-O в основном ионная (\approx 80%), напротив, связь W-O преимущественно ковалентная (\approx 60%). Поэтому вольфраматы можно отнести к классу гетеродесмических соединений, в структуре которых существуют химические связи различного типа [11].


кристаллической решетки И температуры Параметры плавления соединений MeWO₄ (Me = Ca, Sr, Ba) приведены в таблице 1.1. Следует отметить заметное увеличение параметра и объема элементарной ячейки с Me^{2+} , при размера катионов ЭТОМ температура ростом плавления вольфраматов уменьшается.

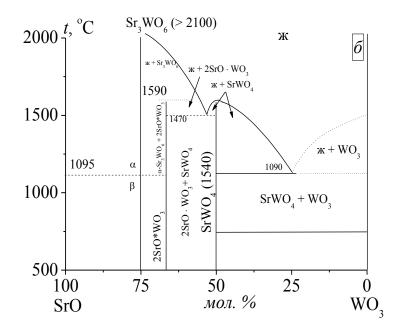

Триоксид вольфрама WO_3 является соединением с преимущественно ковалентными связями и расчетной температурой плавления 1473° C. Давление насыщенных паров WO_3 составляет 10^{-3} мм рт. ст. при 1047° C и 1 мм. рт. ст. при 1300° C [29,30], т.е. в области температур ниже 1000° C перенос WO_3 через газовую фазу не может быть существенным.

Таблица 1.1 Параметры кристаллической структуры MeWO₄ и некоторые свойства систем MeWO₄-WO₃

Соединение	r_{Me}^{2+} , Å	a, Å	c, Å	$V_{\text{\tiny MH}}, Å^3$	$T_{\text{плавления}}$, ${}^{0}C$	$T_{\text{эвтектики}}$, ${}^{0}C$
	[31]			[32]	MeWO ₄	MeWO ₄ -WO ₃
CaWO ₄	1.26	5.25	11.39	59.80	1585	1135
SrWO ₄	1.40	5.42	11.95	64.76	1540	1090
BaWO ₄	1.56	5.65	12.71	71.80	1490	940

Согласно справочным данным [32],рисунок 1.1(a-e), системы $MeWO_4-WO_3$ (Me = Ca, Sr, Ba) являются эвтектическими, точка эвтектики соответствует составу приблизительно 50 мол. WO₃ (или 25 мол. WO₃ для двойных систем MeO-WO₃). С ростом кристаллического радиуса катиона в ряду Ca→Sr→Ba эвтектическая температура систем MeWO₄-WO₃ уменьшается на 200 градусов. Значения температур эвтектик указаны в таблице 1.1.

Рис. 1.1 (*a-в*) Диаграммы состояния систем $MeO - WO_3$ (Me = Ca, Sr, Ba).

1.2 Реакционные и транспортные процессы с участием MeWO₄ и WO₃

Закономерности реакций между MeO и WO₃, обнаруженные В. Яндером, внесли заметный вклад в формирование современного учения о кинетике и

механизме твердофазных химических процессов. Кроме того, современные теории гетерогенного катализа также базируются на идеях, сформулированных в работах [14-17,33,34]. В его работах была впервые отмечена высокая роль подвижности WO₃, по отношению к другим оксидам и, в частности, к карбонатам щелочноземельных металлов, что и явилось предметом его исследований. Основными объектами основным его исследований были реакции синтеза вольфраматов ЩЗМ. В качестве наиболее подходящих объектов он выбрал реакции типа (1.1, 1.2)

$$MeO + WO_3 \rightarrow MeWO_4,$$
 (1.1)

$$MeCO_3 + WO_3 \rightarrow MeWO_4 + CO_2.$$
 (1.2)

Ранее, ученые, работающие в области химии твердого тела, традиционно полагали, что в реакциях образования сложных соединений *a priori* наиболее подвижными являются атомы и ионы, имеющие меньший размер и меньший заряд. Наблюдения Яндера, проведённые имеющимися доступными на тот момент методами, показали существенно иную картину: все изученные реакции осуществлялись посредством переноса или растекания оксида вольфрама, WO₃, через слой продукта реакции, причём внешняя картина соответствовала переносу именно целых «молекул» WO₃ через слой продукта. На основании этих представлений была создана базовая модель твердофазных реакций модель Яндера, механизма ставшая основополагающей ДЛЯ более совершенных моделей Гинстлинга-Броунштейна, Валанси-Картера и других [35,36].

Основополагающей идеей Яндера было положение о том, что WO₃, имея относительно низкую поверхностную энергию, имеет высокую молекулярную поверхностную подвижность, что и порождает именно такой механизм переноса и реакции. Последующие исследования показали верность идей Яндера и важность представлений о вкладе поверхностной и межкристаллитной диффузии в кинетику и механизм реакций в процессах с

участием оксидов обладающих высокой поверхностной подвижностью [14,15] и относительно низкой поверхностной энергией [37].


Принципиальная верность идей Яндера была в дальнейшем многократно подтверждена [38-48]. Данный аспект, как будет показано далее, оказался основополагающим и для процессов, индуцированных электрическим полем.

1.3 Данные по самодиффузии и транспортным свойствам вольфраматов, молибдатов и оксида вольфрама

До этого момента мы не затрагивали вопросов, относящихся к самодиффузии и дрейфовой подвижности компонентов, составляющих структуру шеелита. Так как вольфраматы и молибдаты со структурой шеелита являются типичными диэлектриками с шириной запрещенной зоны $\approx 6...7$ эВ, то их ионная проводимость детально не исследовалась. Однако с момента создания лазерных кристаллов на их основе [49], данный аспект стал одним из решающих, поскольку дефекты замещения имеют непосредственное влияние на люминесцентно-лазерные параметры. Таким образом, появился интерес к исследованиям диффузионных свойств, величины и характера проводимости шеелитов.

1.3.1 Самодиффузия катионов в MeWO₄

На рисунке 1.2 представлены данные по самодиффузии катионов в монокристаллах со структурой шеелита, полученные методом меченых атомов сотрудниками БелГУ и УрГУ и опубликованные в работах [18,50-53]. Оказалось, что шестизарядные катионы W⁶⁺ характеризуются более высокими коэффициентами самодиффузии, чем двухзарядные катионы. Эти данные очень необычны, тем не менее, они подтверждают базовую догадку Яндера о преимущественной подвижности многовалентных атомов (Мо, W) в структуре шеелита.

Рис. 1.2 Данные по самодиффузии в монокристаллах со структурой шеелита:

*CaWO*₄: 1 – W, 2 – Ca; *PbMoO*₄: 3 – Mo, 4 – Pb; *CaMoO*₄: 5 – Mo, 6 – Ca; *SrMoO*₄: 7 – Mo, 8 – Sr.

Полученные результаты (рис.1.2) показывают, что подвижность металлов (W и Мо) в керамических образцах на порядки выше, чем в монокристаллах, то есть при схожей природе разупорядочения объёма и межкристаллитных границ доминирующая роль принадлежит межкристаллитной диффузии. Эффект ускоренной диффузии вдоль межзёренных границ является одной из основных причин электроповерхностного эффекта и электроосмотического переноса, выяснению механизма которых и будет посвящена основная часть настоящей работы.

1.3.2 Зависимость транспортных свойств от морфологии образцов MeWO₄

Многочисленные исследования проводимости и коэффициентов диффузии в MeWO₄ показали, что они существенным образом зависят от размера зёрен и плотности керамики [18,50-53].

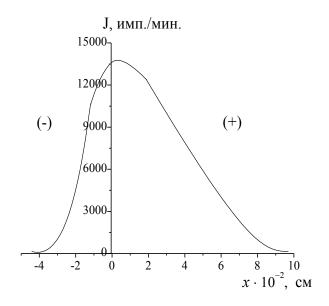
Процессы с участием WO₃ (MoO₃) можно рассматривать только с привлечением представлений о поверхностной и граничной диффузии, о чем свидетельствуют результаты исследования диффузионной подвижности атомов в вольфраматах и молибдатах щелочноземельных металлов с помощью метода радиоактивных индикаторов [18,53]. Так при 900^{0} С коэффициент диффузии вольфрама в монокристаллическом $CaWO_{4}$ (D_{W}^{MK}) на 5 порядков меньше, чем в поликристаллическом $CaWO_{4}$ (D_{W}^{NK}), а для $SrMoO_{4}$ при 850° С $D_{\text{Mo}}^{\text{MK}}/D_{\text{Mo}}^{\text{MK}} \approx 10^{3}$. Данные результаты указывают на существенно более высокую скорость межкристаллитного переноса, являются ключевыми при анализе макромеханизма диффузионных процессов, а также косвенно указывают на различие состава приповерхностных областей и объема кристаллитов.

1.3.3 Транспортные свойства шеелитов

Транспортные свойства керамики MeWO₄ сильно зависят от условий получения образцов. Согласно данным [54], поликристаллические образцы CaWO₄, полученные измельчением монокристалла с последующим спеканием, являются диэлектриками с проводимостью $\sigma \approx 8 \cdot 10^{-7}$ См/см при 900°C, близкую к проводимости исходного монокристалла ($\sigma \approx 4 \cdot 10^{-7}$ См/см при 900°C). Напротив, проводимость керамических образцов CaWO₄, полученных твердофазным синтезом или осаждением из раствора, на полтора

порядка выше ($\sigma \approx 4.2 \cdot 10^{-5}$ См/см при 900^{0} С), что говорит о преобладании переноса по поверхности и границам зерен [54].

Авторы работы [55], которые впервые подробно изучили проводимость монокристалла вольфрамата кальция, CaWO₄, полученного методом Чохральского, пришли к следующим заключениям:


- в интервалах температур $900-1300^{\circ}$ С и давлений кислорода $10^{-9}-10^{-26}$ атм. вольфрамат кальция является полупроводником с электронной проводимостью n- типа;
- изотермические зависимости электропроводности от давления кислорода описываются степенными уравнениями типа $\sigma \sim Po_2^{-1/4}$;
- вклад ионной составляющей в общую проводимость CaWO₄, Σt_{uoh} не превышает 0,08 при максимальных значениях Pо₂, что было оценено по сопоставлению значений проводимости, измеренных на переменном и постоянном токе;
- предполагается, что основным типом разупорядочения структуры является образование собственных антифренкелевских дефектов: $\text{нуль} \Leftrightarrow V_o^x + O_i^x$.

Следует отметить, что при давлениях кислорода выше $Po_2 \approx 10^{-18}$ атм. характеристический показатель степени в зависимости $\sigma^{1/m}$ заметно увеличивается, что может быть вызвано нарастанием вклада ионной проводимости в атмосфере близкой к воздушной. В последующих исследованиях и публикациях [56-60], предположение об кислородно-ионной проводимости CaWO₄, реализующейся на фоне доминирующей электронной проводимости, стало основным, RTOX независимых доказательств данного предположения получено не было.

В тоже время, приведенные на рисунке 1.2. данные об относительно высокой подвижности Мо и W в монокристаллах изученных шеелитов свидетельствуют о том, что механизм разупорядочения в номинально «чистых» шеелитах существенно сложнее, чем «антифренкелевский», а W-

подрешетка не является инертной матрицей, на фоне которой происходит кислородно-ионный и электронный перенос.

Данные, свидетельствующие о высокой подвижности ионов W^{6+} , а также о влиянии электрического поля на перенос этих ионов, (полученные с помощью радиоизотопного метода, разработанного М. Шемля (М. Chemla) в 1958 году [61]), представлены на рис. 1.3 [18].

Рис. 1.3 Распределение изотопа W^{185} в двух образцах $CaWO_4$ после 4-х часового отжига при температуре 800^{0} С под действием постоянного электрического поля напряженностью ~ 200 В/см.

Направление поля показано знаками (+) и (-).

В результате экспериментов выяснилось, что смещение радиоактивной метки W^{185} в направлении положительного электрода существенно выше, чем в направлении отрицательного электрода. Другими словами, радиоактивные частицы вольфрама вели себя так, как если бы с ними был связан отрицательный электрический заряд. Эти результаты, наряду с приведенными выше данными, демонстрирующими, что во всех изученных шеелитах $D_W >> D_{Me}$, явились отправной точкой для построения модели кооперативного W-O — переноса, предложенной Нейманом [62]. В моно- и

поликристаллах MeWO₄ диффузионные подвижности вольфрама и кислорода приблизительно равны и на два порядка выше, чем подвижность Ме [11-13] - $D_W \approx D_O >> D_{Me}$. Основываясь на отмеченных выше особенностях структуры характеристик химической связи, соотношение коэффициентов самодиффузии объяснено совместным переносом W и О в форме многочастичных W-O-комплексов, простейшим из которых, согласно [62], является "квазимолекула" [WO₃]. Предложенная модель стала основой для объяснения механизма необычного влияния электрического поля на скорость реакций синтеза вольфраматов и молибдатов (нефарадеевское поведение), эффекта твердофазного электроповерхностного переноса, электроосмотической миграции и родственных явлений, обнаруженных учеными УрГУ им. Горького Гусевой и Нейманом [38,57,62].

Поскольку движущей силой твердофазных реакций является градиент электрохимического потенциала, то массу продукта, образовавшегося при реакции в электрическом поле, можно представить как сумму диффузионной и миграционной составляющих [62]

$$m = m_{\text{диф}} + m_{\text{мигр}}, \tag{1.3}$$

где $m_{\text{диф}}$ – количество продукта, образовавшегося без внешней поляризации, тогда как $m_{\text{мигр}}$ – коррелирует с зарядом, прошедшим через ячейку (Q). Экспериментально определив $m_{\text{мигр}}$, можно по закону Фарадея определить заряд, необходимый для образования подвижной единицы – Q_F. Так, для предельного случая, когда весь заряд расходуется на перенос диффузанта МоO_3 (или WO_3) в зону реакции, получим

$$Q_F = \frac{m_{\text{Mulep}} z_{\text{Mo}} F}{M_{\text{MoO}_3}} \,. \tag{1.4}$$

Соотношение $Q_F/Q = \chi$ характеризует коэффициент увлечения или выход по току [38] и поэтому не должен превышать 1, $\chi \le 1$. Однако, оказалось, что $\chi \approx 70...100$ для PbMoO₄, $\chi \approx 20...40$ для ZnMoO₄ и $\chi \approx 2...10$ для CaWO₄ (при переносе WO₃). Отметим, что в процентных единицах, указанные значения χ достигают 10^5 %. Формально получить $\chi = 1$ можно, если предположить, что заряд, приходящийся на некоторую подвижную единицу, в составе которой переносится «молекула» MoO₃ или WO₃, составляет $10^{-3}...10^{-1}$ от величины заряда электрона.

Нефарадеевское поведение, так же как и другие перечисленные выше аномалии реакций с участием ковалентно-ионных оксидов MoO₃ и WO₃, связаны с особым кооперативным механизмом их массопереноса по поверхности продукта реакции, который в реакционных процессах реализуется посредством «электроосмотического» механизма твердофазной миграции подвижных частиц MoO₃ и WO₃. Модель твердофазной электроосмотической миграции постулирует основную роль кинетического аспекта электроповерхностных явлений.

1.3.4 Данные последних лет по специфическим аспектам электро- и массопереноса в керамике и монокристаллах соединений с шеелитоподобной структурой

Принципиально новые эффекты были обнаружены при пропускании тока через формально инертную, симметричную ячейку [19,54,58-60]:

$$(-)WO_3 \mid CaWO_4 \mid WO_3(+),$$
 (1.5)

в которой к таблеткам WO_3 , прижатым к керамическому образцу $CaWO_4$, было приложено напряжение указанного знака. В этих экспериментах наблюдали втягивание WO_3 из $WO_3^{(-)}$ – диска на внутреннюю поверхность керамического образца вольфрамата. Было показано, что исследуемое

CaWO₄ полученной присуще керамике любым методом: явление керамическим методом, растворным осаждением $(Ca(NO_3)_2)$ паравольфрамат аммония) ИЛИ спеканием порошка, полученного измельчением монокристалла CaWO₄. Установлено, что масса перенесенного WO_3 и глубина фронта проникновения пропорциональны прошедшего заряда. Скорость процесса линейно связана с пористостью керамики, определяющей величину сечения для поверхностного переноса заряда и массы. Показано, что перенос является активационным процессом с энергией активации 110±4 кДж/моль (1.1 эВ). Для характеристики эффективности активности подложек токовой процесса И использовали коэффициент увлечения χ – число эквивалентов WO₃, перенесенных зарядом в один Фарадей [38]. Для керамики, полученной разными методами, обнаружили, что данный показатель меняется в пределах $0.1 \le \gamma \le 0.5$. Методом РФЭС обнаружили, что состав поверхности исходной керамики и получаемого композита $CaWO_4-WO_3$ близки к W/Me = 2. Скорость переноса WO₃ не зависела от парциального давления паров воды $(0.2-10^{-7}$ атм), возрастая при увеличении температуры $(800...1000^{\circ}\text{C})$, активности кислорода в газовой фазе ($a_{O_2} = 10^{-5}...0.21$), плотности тока (I =1...5 мА), пористости керамики (P = 0.1...0.3).

Проведены первичные исследования свойств эвтектических композитов (1-x)CaWO₄–xWO₃. Обнаружено, что образующиеся композиты, проявляют превалирующий ионный характер проводимости вплоть до $x \approx 0.3$ добавки WO₃. При дальнейшем увеличении содержания WO₃ происходит изменение характера проводимости с ионного на электронный [58-60].

С помощью комплекса экспериментальных и литературных данных показано, что при высоких температурах при контакте оксида вольфрама с монокристаллическим вольфраматом кальция, CaWO₄^{моно}, происходит качественное химическое преобразование поверхностных свойств контактирующих фаз. В терминологии химии поверхности подобные явления характеризуются как образование поверхностных «неавтономных фаз»,

условно обозначаемых далее, как CaW-s, для поверхности CaWO₄ и MeW-s в общем случае, где Me – Ca, Sr, Ba [19,54,58-60].

Было предположено, что топологическую структуру композитов, возможно описать распределенной матричной моделью [64]: плохо проводящие зерна CaWO₄^{моно} окружены непрерывной, бесконечной матрицей «неавтономной фазы» CaW-s. Был проанализирован комплекс вопросов, касающихся состава, структуры, области стабильности фазы CaW-s и её транспортных свойств [19,54,58-60,63,65].

Однако, целый ряд принципиальных моментов, касающихся механизма электрохимических процессов, индуцирующих и сопровождающих явление электроповерхностного переноса, ранее не рассматривался.

Постановка задачи исследования

Исходя из данных, приведённых в литературном обзоре, в настоящей работе, на примере $MeWO_4$ (Me – Ca, Sr, Ba) и композитов (1-x) $MeWO_4$ - xWO_3 , решались следующие основные задачи:

- комплексное изучение транспортных свойств керамических образцов MeWO₄, включающее исследование общей и парциальной ионной проводимости с использованием метода электрохимического импеданса, измерения ЭДС концентрационных ячеек, анализа зависимостей проводимости от температуры и давления кислорода в газовой фазе;
- систематическое исследование состава, природы и подвижности носителей заряда в индивидуальных вольфраматах и композитах на их основе с использованием метода Тубандта. Применение данного метода является отличительной чертой настоящей работы;
- исследование транспортных свойств нового класса твердых электролитов метакомпозитов, образующихся в смеси диэлектрика (MeWO₄) и полупроводника (WO₃);
- установление механизма электро- и массопереноса в системах $MeWO_4-WO_3$ в экспериментах по электроповерхностному переносу, проведенных в специальных условиях.

Глава 2. Экспериментальная часть

Исследования вольфраматов $MeWO_4$ (Me - Ca, Sr, Ba) и композитов на основе $MeWO_4$ и WO_3 были проведены на керамических образцах, приготовленных методом твердофазного синтеза.

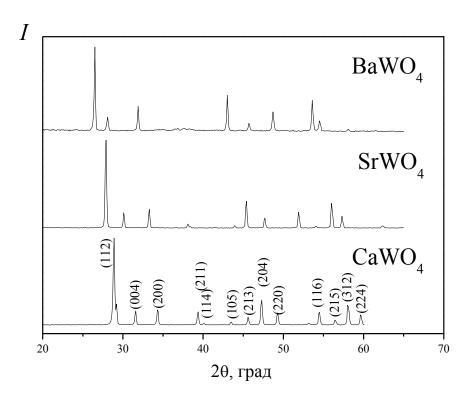
2.1. Синтез керамических образцов

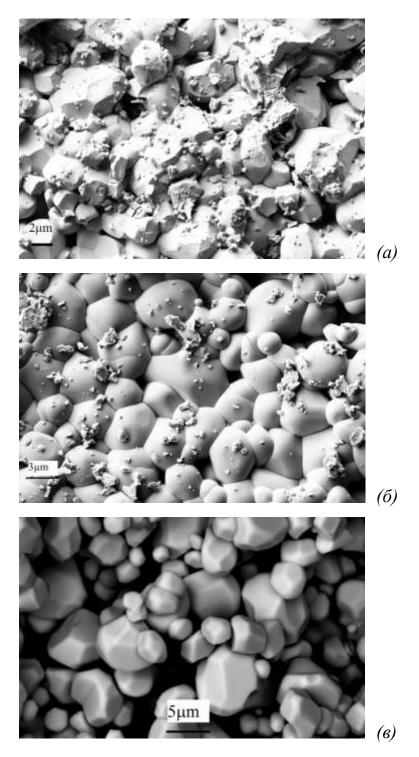
Исходными материалами для твердофазного синтеза $MeWO_4$ служили: $MeCO_3$ (квалиф. «ч.д.а.») и WO_3 (квалиф. «ос.ч. 11-2»).

Исходные вещества, взятые в необходимых пропорциях, смешивали в агатовой ступке, в среде этилового спирта. Синтез проводили на воздухе согласно уравнению

$$MeCO_3 + WO_3 = MeWO_4 + CO_2, \tag{2.1}$$

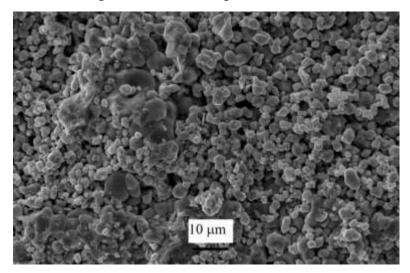
при ступенчатом повышении температуры от 650 до 1000 ^оС с промежуточными стадиями измельчения; время отжига на каждой стадии составляло от 5 до 25 ч. Синтезированные керамические образцы вольфраматов имели белый цвет; плотность керамики составляла 80-90% от теоретической. Метод РФА подтвердил однофазность полученных вольфраматов и идентичность полученной кристаллической структуры с литературным данным, (рис.2.1). При хранении керамики на воздухе в течение 3 лет внешних признаков разрушения не наблюдалось.




Рис. 2.1 Данные РФА синтезированной керамики вольфраматов MeWO₄ (MeCa, Sr, Ba). Рентгенограммы соответствуют стандартным рентгенограммам CaWO₄, SrWO₄ и BaWO₄ (файлы базы данных PDF-2 №№ 07-0210, 08-0490 и 08-0457 соответственно).

Таблетирование исходных веществ и соответствующих смесей проводили на ручном гидравлическом прессе в стальной пресс-форме. Брикеты (2мм×10мм) спекали при условиях, указанных в табл.2.1, и далее шлифовали до получения ровных плоскопараллельных поверхностей.

Таблица 2.1 Условия изготовления брикетов


Фаза	$P_{\text{прес}}$, $\kappa \Gamma / c M^2$	Режим спекания	
		T, °C	τ, ч.
WO ₃	1300	950	5
MeWO ₄	640	1000	10
(1-x)MeWO ₄ $-x$ WO ₃	640	950	6

Изображения спечённой керамики вольфраматов CaWO₄ и SrWO₄, а также керамики WO₃, полученные с помощью сканирующей электронной микроскопии (CЭM), представлены на рис. 2.2 (a, 6, 6) соответственно.

Рис 2.2 Электронно-микроскопические снимки сколов спеченной керамики $CaWO_4$ (*a*), $SrWO_4$ (*б*) и WO_3 (*в*).

Композиты (1-x)МеWO₄-xWO₃ $(0.05 \le x \le 0.55)$, получены механическим смешением MeWO₄ и WO₃ в соответствующих пропорциях. Изображение скола брикета композита 0.85CaWO₄-0.15WO₃, полученного твердофазным методом, представлено на рис.2.3.

Рис. 2.3 Электронно-микроскопический снимок скола брикета композита 0.85CaWO₄-0.15WO₃, полученного твердофазным методом.

Средний размер частиц после синтеза по керамической технологии определяли с помощью анализатора удельной поверхности марки Sorbi N. 4.1 и анализатора гранулометрического состава Shimadzu SALD 7101 на кафедре физической химии ИЕН УрФУ. Размер зёрен порошков MeWO₄ (Me - Ca, Sr, Ba) и WO₃ составил 5 ± 2 мкм и 0.3 ± 0.2 мкм, соответственно. Размер частиц спечённой керамики MeWO₄ составил 7 ± 3 мкм.

2.2 Методы исследования

2.2.1 Метод электроповерхностного переноса

Экспериментальные данные по электроповерхностному переносу (сокращенно ЭПП) получены с помощью симметричной электрохимической ячейки (2.2):

(-)
$$Pt \mid WO_3 \mid MeWO_4 \mid WO_3 \mid Pt \oplus$$
, (2.2)

состоящей из последовательно прижатых друг к другу брикетов WO_3 и $MeWO_4$ (Me=Ca, Sr, Ba), зажатыми между платиновыми электродами, в интервале температур 850...900 ^{0}C . Знак указывает на полярность приложенного напряжения. Величину тока в гальваностатических опытах поддерживали равной I=1 мA, потенциостатические эксперименты проводили при постоянном напряжении, U=300 В. Платиновые электроды были выполнены в виде пластинок.

Подготовленную к эксперименту систему помещали в предварительно разогретую печь. Температура в печи в процессе отжига поддерживалась с точностью $\pm 2^{\circ}$ С с помощью регулятора ТР Варта ТП-403 и термопары ТПП. Время выхода на изотермический режим не превышало 5-10 минут. После этого на систему подавалось постоянное напряжение от источника питания Б5-50. Через ячейку пропускали различное количество электричества. Ток, протекающий через сборку брикетов при U = const, измерялся мультиметром марки Mastech - 60.

Контроль за процессом осуществляли взвешиванием контактирующих брикетов (Δm). Взвешивание проводили до и после отжига на аналитических весах Sartorius TE214S с точностью до 0.0001г.

Явление обратимости эффекта ЭПП проводили в той же самой ячейке (2.2), но после смены полярности электродов. Эксперимент с полярностью $WO_3^{(-)} \to WO_3^{(+)}$ нами был назван «первичный», а с полярностью $WO_3^{(+)} \to WO_3^{(-)}$ – «вторичный».

Самопроизвольные, не стимулированные электрическим полем, контактные отжиги проводились по вышеизложенной методике, только без наложения электрического поля.

2.2.2 Методика измерения электропроводности

Измерение электропроводности проводили как двухконтактным методом с помощью моста переменного тока RLC на частоте f = 1 к Γ ц, так и методом электрохимического импеданса. Измерение проводили на приборе Измеритель параметров иммитанса ИПИ-1 (Институт Проблем Управления им. В.А. Трапезникова, Москва) на частотах 100 Гц...1 МГц (амплитуда тестового сигнала автоматически варьируется в интервале 3...300 мВ). Снятие температурной зависимости электропроводности осуществляли в Скорость режиме охлаждения. съемки температурной зависимости составляла 3°С/мин. Пористые Pt электроды наносили на торцы брикетов в виде пасты и подвергали отжигу в течение 1 часа при температуре $1000\,^{0}$ C.

Расчет электропроводности проводили по формуле (2.3):

$$\sigma = \frac{\ell}{R \cdot S}, \tag{2.3}$$

где R — электрическое сопротивление; ℓ — длина образца; S — площадь поперечного сечения образца (для цилиндрического образца она равна πr^2 , где r — радиус образца). Погрешность определения для конкретного образца не более 5%.

2.2.3~ Исследование влияния давления кислорода (${\rm P}_{{\it O_2}}$) на электропроводность

Исследование зависимости проводимости от активности кислорода, находящегося в газовой фазе в равновесии с твердым веществом, позволяет получить информацию о парциальных составляющих проводимости. В настоящей работе изменение активности невелико и можно приблизительно считать, что активность кислорода равна его давлению. Для изучения влияния давления кислорода в газовой фазе PO_2 на проводимость использовали установку, позволяющую проводить измерения при заданном парциальном давлении кислорода в интервале температур $600-900\,^{\circ}$ С. Давление кислорода задавали и контролировали с помощью кислородного насоса и датчика PO_2 , изготовленных из твёрдого электролита на основе стабилизированной керамики ZrO_2 .

Измеряемая величина ЭДС связана с парциальным давлением кислорода вне и внутри измерительной ячейки соотношением (2.4):

$$E_{\text{\tiny H3M.}} = \frac{RT}{4F} \cdot \lg \frac{P_{O_2}(gu)}{P_{O_2}(go3dyx)}.$$
 (2.4)

В случае воздушного электрода сравнения имеем:

$$\lg P_{O_2} = \frac{-20.16}{T} E(mV) - 0.69.$$
 (2.5)

Точность измерения $P_{\rm O_2}$ определяется условиями работы датчика: при $P_{\rm O_2}$ = 1...10⁻⁵ и 600-1000 0 C она составляет 0.36 - 3.6 %.

2.2.4 Измерения чисел переноса по методу ЭДС

Сумму ионных чисел переноса определяли методом ЭДС в концентрационных гальванических ячейках

$$P'_{O_2}(Pt) \mid (1-x) \text{MeWO}_4 - x \text{WO}_3 \mid (Pt) P'_{O_2}.$$
 (2.6)

Для обеспечения одинаковых условий проведения эксперимента оба электрода принудительно омывались газом с помощью микрокомпрессоров из разных газовых источников: один электрод обдувался воздухом ($P'_{O_2} = 0,21$ атм), другой — кислородом ($P'_{O_2} = 1$ атм). Подачу газов к электродам осуществляли с постоянной скоростью. Изоляция электродных пространств достигалась за счет того, что образец был тщательно пришлифован к алундовой трубке. Сумму ионных чисел переноса Σt_{uon} вычисляли по формуле Нернста для проводника со смешанной электронно-ионной проводимостью:

$$E_{_{\text{\tiny H3M.}}} = \frac{RT}{4F} \cdot t_{_{\text{\tiny HOH}}} \cdot \lg \frac{P'_{_{\mathrm{O}_2}}}{P''_{_{\mathrm{O}_2}}}. \tag{2.7}$$

Схема установки для измерений чисел переноса представлена на 2.4:

1. Исследуемый образец, 2. термопара (ТПП), 3. Pt — токоподводы, 4. Pt — электроды, 5. кварцевая насадка, 6. печь, 7. трёхходовой кран, 8. датчик воздушного потока, 9. вольтметр B7-40/5, 10. мультиметр Motech MT4080A, 11. алундовая трубка, 12. кварцевая трубка.

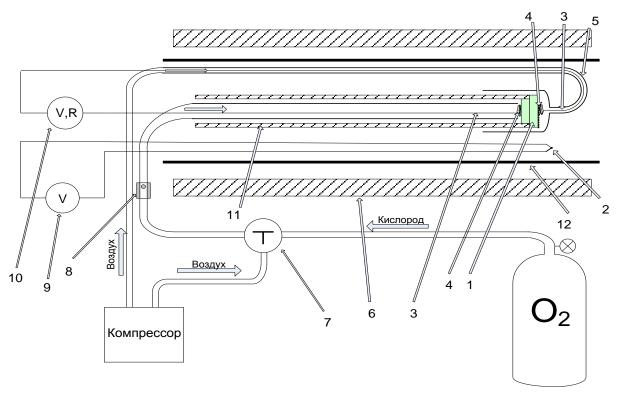


Рис.2.4 Схема установки для измерений чисел переноса методом ЭДС.

2.2.5 Методика опытов по Тубандту

Подготовленные образцы собирали в 3-х (2.8) или 2-х (2.9) дисковую ячейку

(-)
$$Pt | MeWO_4 | MeWO_4 | MeWO_4 | Pt (+),$$
 (2.8)

в которой диски из вольфраматов были зажаты между электродами из платиновых пластинок. Поскольку средний диск после эксперимента не менял массу, а исследуемые вольфраматы имеют довольно низкую проводимость, то для снижения сопротивления ячейки и увеличения силы пропускаемого тока, опыты проводили с 2-х дисковыми ячейками

(-)
$$Pt | MeWO_4 | MeWO_4 | Pt (+),$$
 (2.9)

что не повлияло на качественную картину изменения массы катодной и анодной секций. Все опыты проводились при температуре 900° С. Через ячейки было пропущено различное количество электричества ($Q \le 99 \text{ K}$ л). Ячейка помещалась в печь, и разогревалась до необходимой температуры, после чего на ячейку подавали напряжение U = const = 300 B. Типичные значения тока через ячейку составили 0.1-0.2 MA. Продолжительность опытов достигала 50 часов и определялась прохождением через ячейку требуемого количества электричества. По окончании опыта ячейки охлаждали, разбирали и определяли изменение массы секций и фазовый состав приэлектродных слоев.

2.2.6 Рентгенофазовый анализ (РФА)

Рентгенофазовый анализ (РФА) продуктов синтеза и образцов после опытов проводили на дифрактометре Bruker D8 ADVANCE (CuK_{α} – излучение, длина волны $\lambda = 1.54178$ Å), и ДРОН-6 (CuK_{α} – излучение, длина волны $\lambda = 1.54178$ Å). Рентгенограммы снимали в интервале 2 Θ от 20° до 60° с шагом 0.05° (время экспозиции на каждом шаге – 5 секунд). Идентификацию фаз проводили с помощью программного обеспечения XRL Edit, и базы данных PDF-2.

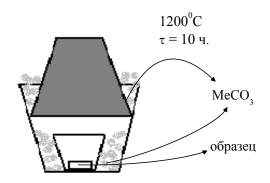
2.2.7 Рентгенофлуоресцентный анализ (РФЛА)

Для анализа химического состава поверхности зерен керамики до и после экспериментов по электроповерхностному переносу применялся рентгенофлуоресцентный анализ. Анализ проводился на спектрометре S4 EXPLORER фирмы Bruker в институте металлургии УрО РАН (г. Екатеринбург).

2.2.8 Электронная спектроскопия для химического анализа (ЭСХА)

Для анализа состава поверхности зерен керамики ДО И после экспериментов также применялся метод ЭСХА. Измерения проводили в физико-техническом институте УрО РАН (г. Ижевск) и в институте PAH металлургии УрО **(**Γ. Екатеринбург) модернизированном на рентгеноэлектронном спектрометре ЭС-2401. Спектры возбуждались немонохроматизированным Mg K_{al} -излучением, вакуум в камерах не ниже 10^{-8} - 10^{-9} мм рт.ст. Анализ проводился после удаления адсорбированного загрязняющего слоя бомбардировкой ионами аргона (1 кэВ) в течение 1-2 мин. Калибровка спектров проводилась по C1s-спектру углеводородов адсорбированного слоя (285 эВ).

2.2.9 Эмиссионная спектроскопия тлеющего разряда (ЭСТР)


Содержание Ca, Sr и Ba в катодном брикете WO₃ после опытов в ячейках (2.2) определяли профилированием по глубине методом эмисионной спектроскопии тлеющего разряда (GDS) на приборе GD Profiler-2 фирмы Horiba Jobin Yvon S.A.S (RF GD-OES), Лонжюмо, Франция.

2.2.10 Микроскопический анализ

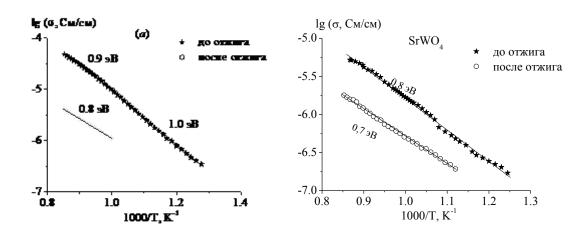
Электронно-микроскопическое исследование брикетов образцов до и после экспериментов проводили на микроскопе JSM Jeol - 5900 LV с горячим вольфрамовым катодом (ИВТЭ УрО РАН, Екатеринбург), а так же с помощью рабочей станции AURIGA CrossBeam, Carl Zeiss NTS (ЦКП ИЕН УрФУ, Екатеринбург).

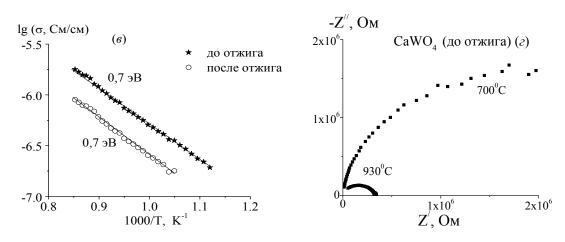
2.2.11 Очистка границ зёрен $MeWO_4$ om WO_3

В ряде экспериментов зерна $MeWO_4$ были принудительно очищены от примеси WO_3 , сегрегированного в процессе синтеза $MeWO_4$. Для этого керамические брикеты исходных вольфраматов Ca, Sr и Ва подвергали дополнительному отжигу в закрытом тигле, на дно которого помещали порошок соответствующих карбонатов (рис. 2.5).

Рис. 2.5. Схема процесса очистки поверхности $MeWO_4$ от сегрегированного WO_3 .

При отжиге не было непосредственного контакта порошков с брикетами, однако мы полагали, что оксид вольфрама, сегрегированный на межзеренных границах, будет удаляться путем сублимации и необратимо связываться при реакции с карбонатом (или оксидом, возникшим при разложении карбоната). Можно было ожидать, что в результате очистки межкристаллитных границ произойдет распад «поверхностных фаз», и проводимость композита существенно понизится. Отжиги провели при 1200°C в течение 10 ч. После отжига измерили зависимость проводимости от температуры и давления Было установлено, что ионный характер проводимости кислорода. сохранился (проводимость не зависела от давления кислорода), однако произошло резкое снижение проводимости.


Глава 3. Электропроводность и транспортные свойства MeWO₄, WO₃ и композитных систем на их основе

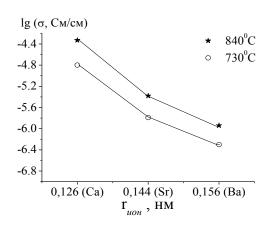

3.1. Электропроводность и транспортные свойства MeWO₄ и WO₃

$3.1.1.\ Вольфраматы\ MeWO_4\ (Me=Ca,\ Sr,\ Ba)$

Как показано в литературном обзоре, характер проводимости и природа носителей ионного заряда в вольфраматах MeWO₄ (Me – Ca, Sr, Ba) оставалась не до конца выясненной. В настоящем разделе приведены данные более подробных исследований проводимости вольфраматов кальция, стронция, бария и оксида вольфрама, поскольку они являются базовыми соединениями при исследовании процессов, происходящих на межфазной границе WO₃ МеWO₄. Эти сведения также являются ключевыми для понимания механизма формирования и особенностей транспортных свойств композитов системы MeWO₄–WO₃.

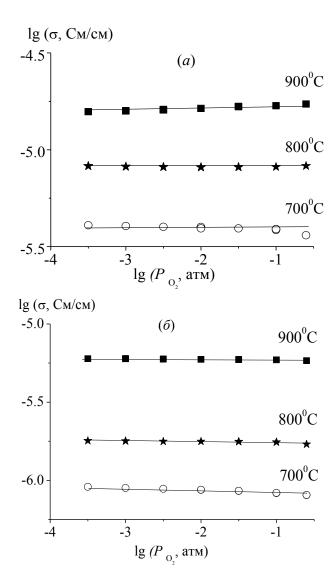
Исходя из литературных данных [60] о сегрегации WO_3 на поверхности зерен $MeWO_4$, полученных керамическим методом, образцы всех вольфраматов подвергали высокотемпературному отжигу по методике, описанной в п. 2.12. Зависимости общей проводимости образцов $MeWO_4$ до и после высокотемпературного отжига, а также типичные годографы комплексного импеданса для $CaWO_4$, показаны на рисунках $3.1(a-\epsilon)$.

Рис.3.1 (*a-г*). Температурные зависимости общей проводимости вольфраматов $CaWO_4$ (*a*), $SrWO_4$ (*б*) и $BaWO_4$ (*в*) и годографы импеданса $CaWO_4$, полученные при различных температурах (*г*).

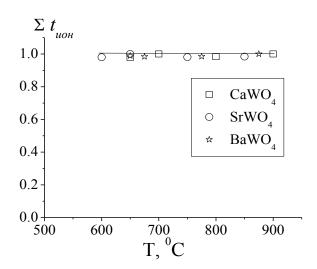

Как видно, аррениусовы зависимости общей проводимости, о, всех вольфраматов MeWO₄ имеют линейный вид с энергией активации, E_a, равной 0.7 эВ для SrWO₄ и ВаWO₄ и 1 эВ для СаWO₄. Удаление слоя WO₃, сегрегированного на поверхности зерен вольфраматов, снижает величину проводимости, однако не влияет на значение энергии активации проводимости. Данный факт позволяет предположить, что WO₃ удаляется не полностью, уменьшается лишь толщина его поверхностной пленки. Также следует отметить, что после очистки поверхности от WO₃ проводимость резко уменьшается и становится близкой по величине к проводимости монокристаллических вольфраматов MeWO₄. Например, проводимость исходной керамики CaWO₄ при 850 0 C была равна $\sigma \approx 3 \cdot 10^{-5}$ Cm/cm, а после очистки поверхности она уменьшалась до значения $\sigma \approx 3.10^{-6}$ См/см, близкого к соответствующему значению для монокристалла CaWO₄ [54,55]. Поскольку величина проводимости крайне низка, потому исследуемые вещества могут классифицироваться как диэлектрики.

Из приведенных данных можно сделать предположение, что поверхность зерен в образцах вольфраматов MeWO₄, полученных керамическим методом, всегда обогащена оксидом вольфрама, который адсорбируется на границах зерен вольфраматов и обуславливает повышенную проводимость образцов. В

процессе очистки оксид вольфрама, сегрегированный на межзеренных границах, удаляется путем сублимации и необратимой реакции с карбонатом (или оксидом, возникшим при разложении карбоната). Удаление WO₃ с межзеренных границ приводит к снижению проводимости MeWO₄.


Данные импедансной спектроскопии (рисунок 3.1 (z)), полученные для керамики CaWO₄, указывают на отсутствие барьерных поверхностных слоев и электродной поляризации. Следовательно, поверхностный слой имеет повышенную проводимость, а значение общей проводимости, рассчитанной по точке пересечения полуокружности, выходящей из начала координат, с осью \mathbf{Z}' , определяется суммой вкладов проводимости объема зерен и поверхностного слоя.

На рисунке 3.2 показана зависимость проводимости керамических образцов всех изученных вольфраматов от кристаллографического радиуса иона Me²⁺ (для к.ч. 8). Наблюдаемое снижение проводимости при переходе от CaWO₄ к BaWO₄, на первый взгляд может свидетельствовать о том, что ионными носителями заряда являются ионы щелочноземельного металла. Ниже будет показано, что это не так. Дело в том, что величина проводимости керамических образцов MeWO₄, зависит в первую очередь от морфологии керамики (размера зерен и относительной плотности образца). В частности, в ряде работ [54,57,58] показано, что величина проводимости керамики MeWO₄, в зависимости от морфологии может меняться в пределах 2-х порядков, поскольку доминирующая роль в проводимости данных объектов принадлежит межкристаллитному и поверхностному транспорту заряда и массы.


Рис. 3.2 Зависимость проводимости керамики MeWO₄ от радиуса иона Me^{2+} (для к.ч. 8). Значения радиуса катионов взяты по шкале Шеннона [31].

Согласно литературным данным [54], в интервале температур 700-900°С проводимость CaWO₄ не зависит от парциального давления кислорода PO_2 . На рисунках 3.3 (a, δ) приведены зависимости электропроводности от давления кислорода в газовой фазе для SrWO₄ (a) и BaWO₄ (δ), из которых видно, что общая проводимость в интервале PO_2 от $3.5\cdot10^{-4}$ до $2.1\cdot10^{-1}$ не зависит от давления кислорода, а характеристический показатель 1/m зависимости $\sigma \sim PO_2^{-1/m}$ близок к нулю. Такое поведение указывает на ионный характер проводимости вольфраматов [66]. Сведения по определению природы носителей ионного заряда другими методами будут рассмотрены ниже.

Рис.3.3 Изотермические зависимости проводимости керамики $SrWO_4(a)$ и $BaWO_4(\delta)$ от давления кислорода в газовой фазе.

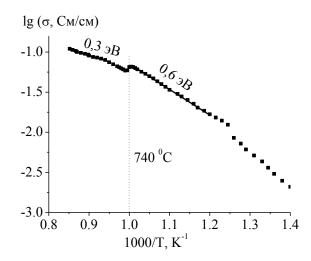

Сумма чисел переноса ионов была определена методом ЭДС концентрационного кислородно-воздушного гальванического элемента. На рисунке 3.4 представлены зависимости суммы чисел переноса, измеренные методом ЭДС. Результаты измерений четко показывают, что проводимость керамики изученных вольфраматов MeWO₄ близка к чисто ионной, $\Sigma t_{ion} = 0.98 \pm 0.02$.

Рис. 3.4 Температурная зависимость суммы ионных чисел переноса ионов в керамике $MeWO_4$ (Me = Ca, Sr, Ba).

$3.1.2.\ WO_3$

На рисунке 3.5. представлена температурная зависимость проводимости керамики WO_3 . Проводимость оксида вольфрама при 900^{0} С относительно высока, $\sigma \approx 1 \cdot 10^{-1}$ См/см, и на пять порядков по величине превышает проводимость вольфраматов. На температурной зависимости проводимости наблюдается скачок при $720\text{-}740^{0}$ С, который вызван фазовым переходом структуры WO_3 из высокотемпературной тетрагональной модификации в орторомбическую модификацию. Так же, WO_3 претерпевает еще один фазовый переход в интервале температур $720\text{-}320^{0}$ С, который вызван сменой орторомбической модификации на более низкотемпературную триклинную или моноклинную модификацию [67].

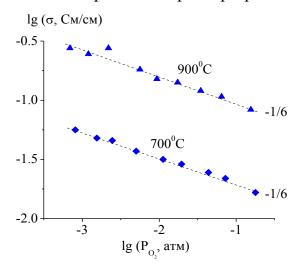


Рис.3.5 Температурная зависимость проводимости WO₃.

Оксид вольфрама WO₃ является нестехиометрическим соединением и полупроводником п-типа. Механизм появления кислородной нестехиометрии и образования дефектов описывается квазихимическим равновесием [67]:

$$O_{O}^{x} \leftrightarrow 1/2O_{2} + V_{O}^{"} + 2e'. \tag{3.1}$$

Экспериментально полученные нами зависимости $\sigma \sim P_{O_2}^{-1/6}$, для низкотемпературной и высокотемпературной модификаций, рис.3.6, описываются реакцией (3.1), согласуются с литературными данными [67] и однозначно указывают на электронный характер проводимости WO₃.

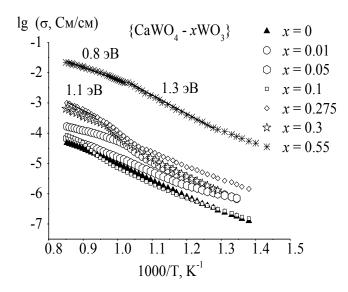
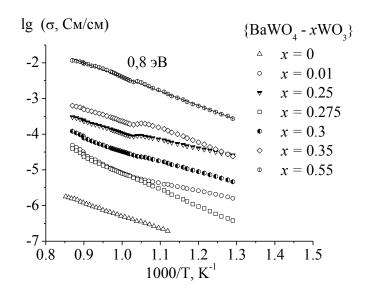
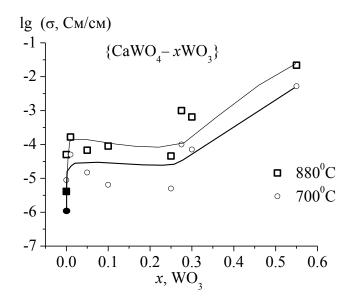


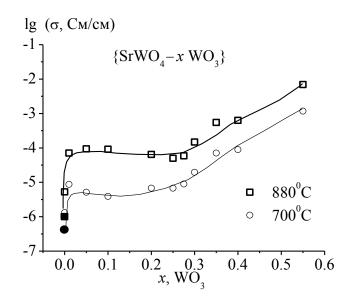

Рис. 3.6 Изотермические зависимости проводимости WO_3 от давления кислорода в газовой фазе.


3.2. Общая проводимость и числа переноса ионов в композитах $MeWO_4$ - WO_3 , (Me=Ca,Sr,Ba)

3.2.1. Зависимость общей электропроводности керамики композитов от температуры

Температурные зависимости общей электропроводности, измеренные в режиме охлаждения в атмосфере воздуха для композитов MeWO₄-WO₃, где x = 0.01-0.55, (Me = Ca, Sr, Ba) представлены на рисунке 3.7.





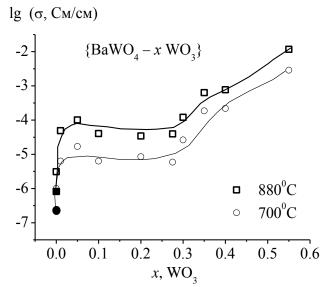
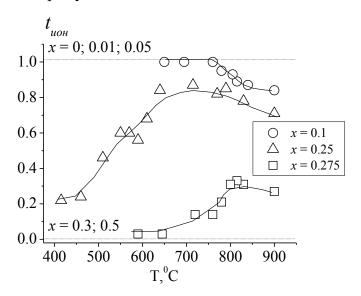


Рис.3.7 Температурные зависимости общей проводимости композитов (1-x)Ме WO_4 -xW O_3 .

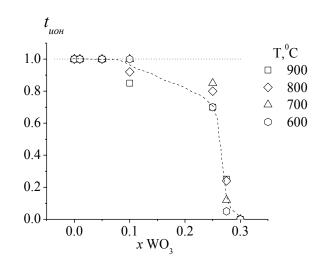
На основании полученных температурных зависимостей электропроводности были построены изотермы общей проводимости в зависимости от концентрации WO_3 в композите (рисунок 3.8).

Рис.3.8 Концентрационные зависимости общей проводимости композитов (1-x)МеWO₄-xWO₃. На рисунке значками ■ и • указаны значения проводимости для керамики, очищенной от WO₃ (п.2.12).

Как видно, порог перколяции электронной проводимости ($t_e \ge 0.5$, $t_{uoh} \le 0.5$) отвечает составам с $x_{nopoe} \ge 0.3$. Это значение характерно для всех исследованных композитов (1-x)МеWO₄-xWO₃.


Для определения характера проводимости нами были проведены эксперименты по определению чисел переноса носителей заряда в исследуемых материалах методом ЭДС.

3.2.2. Числа переноса композитов, полученные методом ЭДС


Данные по зависимости числа переноса ионов в композитах (1-x)МеWO₄–xWO₃ (Ме = Ca, Sr, Ba) от температуры приведены на рисунке 3.9. Поскольку измерения были проведены для гальванического элемента с кислородным (P'O₂ = 1 атм.) воздушным (P'O₂ = 0.21 атм.) газовыми электродами, то полученные данные характеризуют эффективное значение числа переноса ионов при среднем давлении PO₂ \approx 0.6 атм. Согласно работе [62], экспериментально определенное число переноса ионов можно отнеси к вкладу кислородной проводимости, однако, как будет показано ниже, присутствует ещё один носитель заряда.

3.2.2. Температурные зависимости чисел переноса носителей заряда

Зависимости числа переноса ионов t_{uoh} в композитах (1-x)CaWO₄-xWO₃ от температуры приведены на рисунке 3.9, концентрационные зависимости t_{uoh} -x(WO₃) представлена на рисунке 3.10.

Рис. 3.9 Температурные зависимости чисел переноса ионов t_{uoh} в композитах (1-x)CaWO₄-xWO₃.

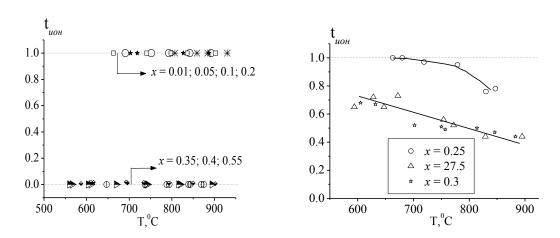


Рис.3.10 Изотермические зависимости чисел переноса t_{uoh} в композитах (1-x)CaWO₄-xWO₃ от содержания WO₃.

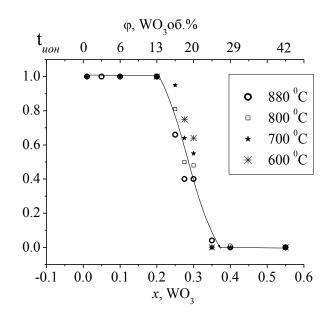
Анализируя данные рис.3.9 и 3.10, можно сделать следующие заключения:

- Исходный СаWO₄ (x=0) и составы с добавкой WO₃ x=0.01 и x=0.05, являются ионными проводниками ($t_{uoh}\approx 1$) во всем температурном интервале (700 900°C). Для состава с x=0.1 WO₃ вклад ионной проводимости σ_{uoh} начинает уменьшаться при температурах выше 700° C и падает до 0.85 для 900° C.
- Состав x=0.3 является преимущественно электронным проводником, но, тем не менее, при всех температурах вклад σ_{uoh} остается на уровне $t_{uoh}\approx 0.03$. И, наконец, только для состава x=0.55 вклад σ_{uoh} оказался пренебрежимо малым, т.е. $t_{uoh}\approx 0$.
- В области составов $0.1 \le x \le 0.3$ проводимость является смешанной, при этом зависимость вклада ионной проводимости от температуры не является монотонной. Так, для составов x = 0.25 и 0.275 имеются участки характеризуемые $(\partial t_{uon} / \partial T > 0)$ и $(\partial t_{uon} / \partial T < 0)$. Подобное знакопеременное поведение, особенно возрастание t_{uon} с температурой, не характерно для классических смешанных проводников [68].

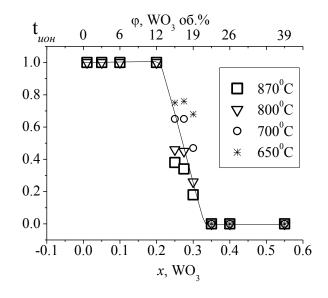
Экспериментальные данные по зависимости числа переноса ионов от температуры для композитов (1-x)MeWO₄-xWO₃ (Me = Sr, Ba), полученные методом ЭДС, приведены на рисунках 3.11, 3.12 соответственно.

Рис. 3.11 Температурные зависимости чисел переноса ионов t_{uoh} в композитах (1-x)SrWO₄-xWO₃.

Рис. 3.12 Температурные зависимости числа переноса t_{uon} композитов $(1-x)BaWO_4-xWO_3$.


Как видно, в изученном температурном интервале 550-900 0 C составы с x от 0.01 до 0.2, являются ионными проводниками ($t_{uon} \approx 1$) как для бариевой, так и для стронциевой систем.

Композиты с x = 0.25; 0.275; 0.3 характеризуются смешанным типом проводимости, с ростом температуры вклад ионной проводимости

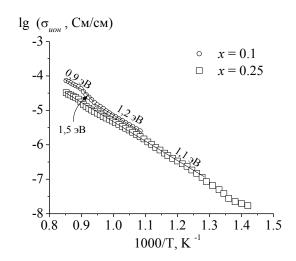

монотонно уменьшается до значений $t_{uoh}=0.3\text{-}0.7$ при $900^{\circ}\mathrm{C}$. Для большинства этих составов определение t_{uoh} проведено в интервале $600-900^{\circ}$ С для системы (1-x)SrWO₄-xWO₃, и 550-870 0 С для (1-x)BaWO₄-xWO₃ т.е. при гораздо более низкой температуре, чем для составов с доминирующей ионной проводимостью. Такое поведение связано с обратимостью $Pt(O_2) \mid O^{2-}$ -электродов, вероятно растет cувеличением содержания которая электронного проводника WO₃ на контакте между Pt и композитом, что обратимости $Pt(O_2) \mid O^{2-}$ сходно увеличения c известным явлением электродов при добавке к Pt некоторого количества смешанного проводника, обладающего высокой окислительно-восстановительной активностью [66].

Композиты (1-x)Ме WO_4 – xWO_3 (Ме = Ва, Sr) с более высокой концентрацией оксида вольфрама, x = 0.35, 0.40, 0.55, являются электронными проводниками, $t_{uoh} \approx 0$ во всем изученном интервале температур.

Концентрационные зависимости t_{uoh} для композитов (1-x)SrWO₄-xWO₃ и (1-x)ВаWO₄-xWO₃ показаны на рис 3.13 и 3.14, соответственно. Как видно, порог перколяции электронной проводимости ($t_e \ge 0.5$, $t_{uoh} \le 0.5$) находится при составе $x_{nopoe} \le 0.3$ (30 мол.%), что соответствует объемной доле $\phi \approx 20$ объем. % WO₃. Аналогичная закономерность наблюдается и для композитов (1-x)CaWO₄-xWO₃ (рис.3.10).

Рис.3.13 Концентрационная зависимость чисел переноса t_{uon} для композитов (1-x)SrWO₄-xWO₃.

Рис. 3.14 Концентрационная зависимость чисел переноса t_{uoh} для композитов (1-x)BaWO₄-xWO₃.


3.3. Ионная проводимость композитов (1-x)Me WO_4 - xWO_3 , (Me=Ca,Sr,Ba)

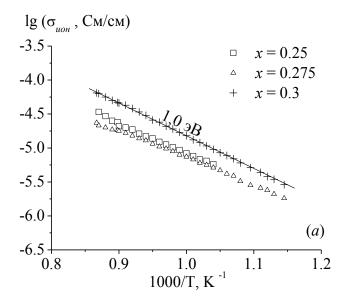
3.3.1. Композиты (1-x)CaWO₄-xWO₃

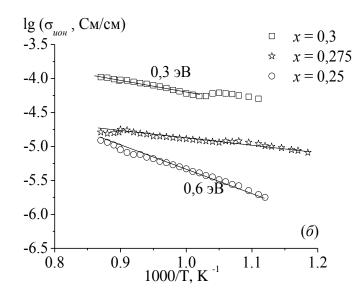
Данные по числам переноса ионов мы использовали для расчета температурных зависимостей ионной проводимости σ_{uoh} и значений энергии активации ионной проводимости E_{uoh} .

Как видно из рисунка 3.15, для состава (x = 0.1) наблюдаем сложную зависимость σ_{uoh} (T). Здесь можно выделить как минимум 3 участка σ_{uoh} с E_{uoh} от 0.9 до 1.5 эВ. Этот состав примечателен — именно на нем наблюдается начало перехода от преимущественно ионной проводимости к смешанной проводимости, и t_{uoh} уменьшается до 0.85 при 900°C. Для состава x = 0.25 зависимость σ_{uoh} (T) упрощается — наблюдаем два участка с $E_{uoh} = 1.0$ -1.1 эВ.

Отчетливо видно отсутствие определенной закономерности изменения проводимости и энергии активации с изменением состава композитов. Важно отметить несовпадение протяженности участков с разной энергией активации не только для температурной зависимости общей проводимости (рис.3.7), но также и для ионной проводимости, рисунок 3.15.

Рис.3.15 Зависимости ионной проводимости композитов (1-x)CaWO₄-xWO₃ от температуры.


3.3.2. Композиты $(1-x)MeWO_4-xWO_3$ (Me=Sr, Ba)


Данные по зависимости ионной проводимости от температуры приведены на рисунке 3.16 (*a*) для системы $SrWO_4$ - WO_3 и на рисунке 3.16 (*б*) для системы $BaWO_4$ - WO_3 ($PO_2 = 0.21$ атм.).

Как видно, значения E_{uoh} для всех композитов (1-x)SrWO₄-xWO₃ $(0.25 \le x \le 0.3)$ близки и укладываются в интервал E_{uoh} =0.9±0.2 эВ.

Композиты (1-x)ВаWO₄-xWO₃ демонстрируют иное поведение зависимости $E_{uon}(x)$, рис. 3.16 (б). Здесь отчетливо прослеживается тенденция снижения E_{uon} с ростом x от 0,6 эВ (x = 0.25) до 0.3 эВ (x = 0.3), т.е. ионный перенос энергетически облегчен вблизи порога перколяции электронной проводимости ($t_e \approx t_{uon} \approx 0.5$).

Таким образом, результаты прямого исследования характера проводимости $MeWO_4$ и его композитов $MeWO_4$ - WO_3 методом измерения ЭДС концентрационного гальванического элемента выявили ряд интересных и даже необычных черт в поведении изученных объектов.

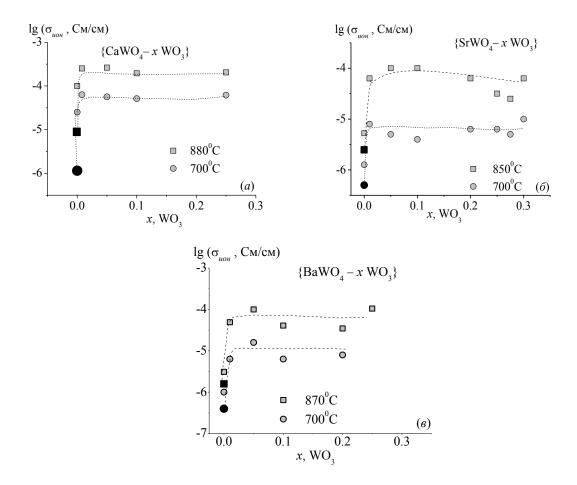


Рис.3.16 (a, δ). Зависимости ионной проводимости композитов (1-x)SrWO₄–xWO₃ (a) и (1-x)BaWO₄–xWO₃ (б) от температуры, PO₂= 0.21 атм.

На основании данных по числам переноса измеренных методом ЭДС были получены концентрационные зависимости ионной проводимости $\sigma_{uoh}(x)$, рисунки 3.17 (a-e).

3.3.3. Концентрационные зависимости ионной проводимости композитов (1-x)Me WO_4 - xWO_3 (Me = Ca, Sr, Ba)

Концентрационные зависимости ионной проводимости композитов (1-x)МеWO₄-xWO₃ (Ме = Ca, Sr, Ba) представлены на рисунке 3.17. Обращает на себя внимание резкий рост проводимости (на 1 – 1.5 порядка величины) при малых добавках WO₃ ($x \le 0.01$). При дальнейшем увеличении концентрации WO₃ в композите (0.01 $\le x \le 0.25$) величина ионной проводимости преимущественно не изменяется.

Рис. 3.17 (*a*, *б*, *в*). Изотермические зависимости ионной проводимости композитов (1-x)MeWO₄-xWO₃ (Me = Ca, Sr, Ba) от содержания WO₃ (*x*). На рисунке значками \blacksquare и \bullet указаны значения проводимости для очищенной керамики исходного вольфрамата.

Представленные данные показывают, что все исследованные композиты вплоть до концентрации x=0.3 (30 мол.%) WO₃ обладают повышенной ионной проводимостью, несмотря на то, что они получены добавлением электронного полупроводника WO₃ в диэлектрик MeWO₄. Эти материалы нами охарактеризованы как «метакомпозиты» [20,69], поскольку материал в целом обладает свойствами, не присущими ни одному из составляющих его компонентов. Для того чтобы выделить данные материалы в отдельный класс, в работах [20,69] было предложено выделять состав метакомпозитов в фигурные скобки, в нашем случае: {MeWO₄-WO₃} (Me = Ca, Sr, Ba).

Ионная проводимость в метакомпозитах $\{\text{MeWO}_4-\text{WO}_3\}$ возникает вследствие распространения WO_3 вглубь керамического образца вдоль границ зёрен MeWO_4 и образования на границе $\text{MeWO}_4|\text{WO}_3$ неавтономной контактной фазы, речь о которой более подробно пойдет ниже.

Выводы по главе 3

- 1. Комплексом методов (измерениями электропроводности в зависимости от температуры и давления кислорода в газовой фазе, измерениями чисел переноса ионов методом ЭДС) проведено исследование электрических и транспортных свойств вольфраматов MeWO₄ и композитов на основе MeWO₄ и WO₃.
- 2. Обнаружено резкое, на 1-2 порядка, падение величины проводимости керамики MeWO₄ стехиометрического состава после высокотемпературного дополнительного отжига, направленного на очистку поверхности зёрен керамики от сегригированного WO₃.
- 3. Впервые, методом ЭДС определены числа переноса ионов кислорода в композитах (1-x)МеWO₄–xWO₃ (Me = Ca, Sr, Ba) при x = 0 0.55. Показано, что при концентрации WO₃ ниже x = 0.2 преобладает кислородно-ионная проводимость, $t_{uoh} = t_O^{2-} = 1$, и исследуемые системы относятся к классу метакомпозитов {MeWO₄-WO₃}.
- 4. Полученные данные по числам переноса носителей заряда и парциальным проводимостям композитов (1-x)Ме WO_4 –xWO $_3$ показывают сложность процессов ионного переноса в изученных материалах.
- резкое возрастание ионной проводимости в области малых концентраций добавки WO_3 .

Глава 4. Природа ионного переноса в вольфраматах MeWO₄ (Me - Ca, Sr, Ba) по данным метода Тубандта

Исходя из состава и структуры, потенциальными ионными носителями в $MeWO_4$ и в материалах на основе $MeWO_4$ могут быть ионы Me^{2+} , O^{2-} и сложные анионы $WO_4^{\ 2-}$ [62]. Чтобы определить природу основных ионных носителей в керамике $MeWO_4$, в настоящем разделе будут рассмотрены результаты экспериментов, проведённых с использованием метода Тубандта. Методика проведения опытов по Тубандту описана в п. 2.6.

4.1. Возможные схемы процессов, происходящих при электролизе вольфраматов

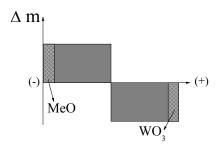
Прежде чем перейти к изложению экспериментальных результатов, проанализируем возможные схемы электродных реакций в двухдисковой ячейке (2.9), состав продуктов электролиза и изменение массы католита и анолита для следующих предельных случаев (4.1-4.3):

$$\Sigma t_{uoh} \approx t_{Mo^{2+}} \approx 1$$
, (4.1)

$$\Sigma t_{uoh} \approx t_{O^{2-}} \approx 1, \qquad (4.2)$$

$$\Sigma t_{uoh} \approx t_{WO_s^{2-}} \approx 1. \tag{4.3}$$

a) Рассмотрим случай, когда $t_{Me}^{2+} \approx 1$.


В этом случае будут протекать следующие электродные реакции (4.4, 4.5):

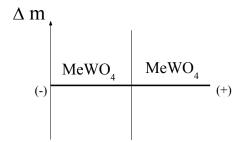
(-)
$$Me^{2+} + 1/2O_2 + 2e \leftrightarrow MeO$$
, (4.4)

(+)
$$MeWO_4 \leftrightarrow WO_3 + 1/2O_2 + Me^{2+} + 2e$$
. (4.5)

В прикатодном слое будет выделяться MeO, масса катодного диска будет увеличиваться, в прианодном слое появится WO₃, масса анодного диска уменьшится. Отметим, что если на диаграмме состояния систем MeO-WO₃ присутствуют фазы, обогащённые MeO, например, Ca_3WO_6 , Sr_3WO_6 , Ba_2WO_5 , Ba_3WO_6 (см. рисунок 1.3 (a-a), табл. 4.1), то они могут образоваться в прикатодной области, связывая выделяющийся MeO, например, по реакции (4.6).

$$BaO + BaWO_4 \rightarrow Ba_2WO_5. \tag{4.6}$$

Рис. 4.1 Диаграммы изменения массы дисков MeWO₄ и состав приэлектродных слоев для случая $t_{Me}^{2+} \approx I$.

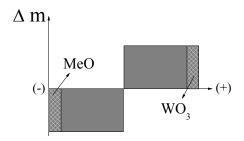

δ) Рассмотрим случай, когда t_0^{2-} ≈ 1.

Электродные реакции для этого случая имеют простой вид (4.7, 4.8):

(-)
$$1/2O_2 + 2e^{/} \rightarrow O^{2-}$$
, (4.7)

$$(+) O^{2-} \rightarrow 1/2O_2 + 2e^{/}.$$
 (4.8)

Очевидно, что в данном случае изменение массы и фазового состава секций происходить не будет.


Рис. 4.2 Диаграммы изменения массы дисков MeWO₄ и состав приэлектродных слоев для случая $t_O^{2-} \approx 1$.

e) И, наконец, рассмотрим третий случай, когда $t_{WO4}^{2-} \approx 1$. Электродные реакции для этого случая можно записать в виде (4.9, 4.10):

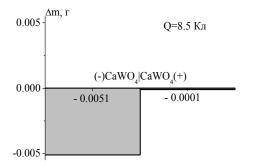
(-)
$$MeWO_4 + 1/2O_2 + 2e^{/} \leftrightarrow WO_4^{2-} + MeO$$
, (4.9)

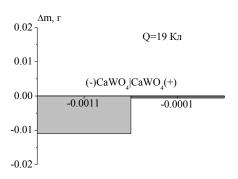
$$(+) WO_4^{2-} \leftrightarrow WO_3 + 1/2O_2 + 2e^{-1}$$
 (4.10)

В прикатодном слое образуется MeO (способен связываться в вольфрамат, см. уравнение (4.9)), масса катодного диска уменьшается за счёт отвода подвижных анионов WO_4^{2-} из прикатодной области в направлении к аноду. В прианодном слое образуется WO_3 , масса анодного диска увеличивается.

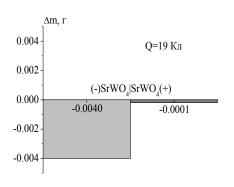
Рис. 4.3 Диаграммы изменения массы дисков MeWO₄ и состав приэлектродных слоев для случая $t_{WO_4}^{2-} \approx 1$.

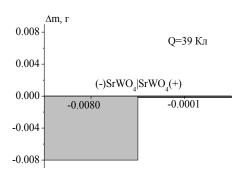
Таблица. 4.1 — Фазы в системах $MeO - WO_3$ и температуры плавления изученных вольфраматов [32].

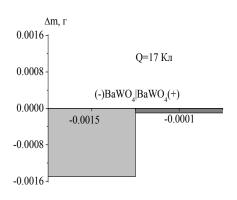

Система	Фазы	Тплавл.,
		MeWO ₄ , ⁰ C
CaO-WO ₃	CaWO ₄ ,	1590
	Ca ₃ WO ₆	
SrO-WO ₃	SrWO ₄ ,	1540
	Sr ₂ WO ₅	
	Sr ₃ WO ₆	
SrO-WO ₃	BaWO ₄ ,	1490
	Ba_2WO_5	
	Ba ₃ WO ₆	

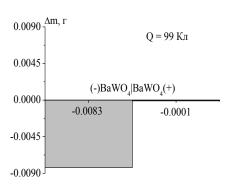

Из вышеизложенного можно сделать важный вывод: состав твердофазных продуктов, образующихся при электролизе, не зависит от природы ионных носителей, принципиальное различие состоит в знаке изменения массы катодной и анодной секций ячейки. Именно это и позволяет определить природу и знак основных ионных носителей.

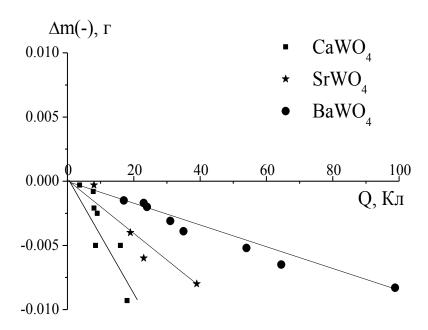
4.2. Анализ экспериментальных результатов


Перейдем непосредственно к изложению и анализу экспериментальных данных, полученных при изучении исследованных вольфраматов в двухсекционных ячейках Тубандта. Диаграммы изменения массы катодных и анодных керамических дисков показаны на рисунке 4.4 (*а-в*), и зависимости изменения массы анодных секций от величины прошедшего заряда для всех MeWO₄ показаны на рисунке 4.5.


$CaWO_4(a)$




$SrWO_4(\delta)$



$BaWO_4(e)$

Рис. 4.4 (a-e). Диаграммы изменения массы катодных и анодных керамических дисков в опытах по Тубандту.

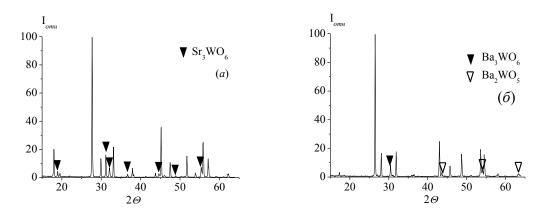
Рис. 4.5 Зависимость изменения массы катодного брикета от количества электричества.

Ниже приведены наиболее общие и важные результаты и закономерности, полученные в экспериментах по методу Тубандта.

- 1. Во всех без исключения экспериментах наблюдали уменьшение массы катодной секции ячеек. Это указывает на отрицательный заряд ионных носителей массы и их перенос в направлении Pt(+)-электрода.
- 2. Величина убыли массы катодного брикета (католита) $\Delta m^{(-)}$ линейно зависит от количества электричества прошедшего через ячейку.
- 3. Во всех экспериментах с вольфраматами MeWO₄ масса анодного диска (анолита) оставалась неизменной в пределах случайной погрешности взвешивания (\pm 0,0001 г).

Далее рассмотрим данные по изменению состава приэлектродных областей в результате электролиза.

По данным РФА на поверхности брикетов, контактировавшей с Pt(-)электродом, во всех случаях образуются фазы, обогащенные катионами Me^{2+} .
Так, в прикатодной области керамики вольфрамата $SrWO_4$ после электролиза


зафиксировали соседнюю по диаграмме состояния фазу Sr_3WO_6 , таблица 4.1, рис. 4.6 a, образовавшуюся в результате ухода ионов WO_4^{2-} в направлении Pt(+) электрода и протекания реакции (4.11):

(-)
$$3SrWO_4 + O_2 + 4e \rightarrow Sr_3WO_6 + 2WO_4^{2-}$$
 (4.11)

После электролиза $BaWO_4$ в прикатодной области были обнаружены фазы Ba_2WO_5 и Ba_3WO_6 , рис. 4.66, образующиеся в реакциях (4.12, 4.13):

(-)
$$2BaWO_4 + 1/2O_2 + 2e \rightarrow Ba_2WO_5 + WO_4^{2-}$$
, (4.12)

(-)
$$3BaWO_4 + O_2 + 2e \rightarrow Ba_3WO_6 + 2WO_4^{2-}$$
. (4.13)

Рис. 4.6 (a, δ) Рентгенограммы, полученные от прикатодных участков дисков SrWO₄ (a) и BaWO₄ (δ) после электролиза, T = 900 0 C, Q = 99 Кл.

В прианодной области при электролизе всех вольфраматов происходит окисление ионов WO_4^{2-} по реакции (4.10) и образуется WO_3 , выделение которого зафиксировано визуально по появлению светло-зелёного пятна на поверхности брикета.

Таким образом, в результате проведенных исследований не было получено никаких данных, указывающих на участие ионов Me²⁺ в ионной проводимости. Все полученные данные, как по изменению массы католита,

так и по составу фаз, образовавшихся в приэлектродных областях, свидетельствуют о значительном вкладе ионов $W{O_4}^{2-}$ в электро- и массоперенос.

Следует отметить, что при электролизе исследуемых вольфраматов наблюдается неожиданный эффект, — отсутствие изменения массы анодного брикета $MeWO_4$ ($\Delta m_{(+)}=0$). В принципе, WO_3 , выделившийся на границе «вольфрамат Pt(+)» может сублимировать, занижая истинное значение массы WO_3 выделившегося на аноде. Однако упругость пара WO_3 при температуре экспериментов невысока (1,8·10⁻⁸ атм.[29]), поэтому можно было бы ожидать, хотя бы небольшого изменения массы. Однако, изменения массы брикетов $MeWO_4(+)$ не было зафиксировано в пределах погрешности взвешивания.

Неизменность массы анодной секции означает, что практически весь WO_3 , выделившийся в результате реакции (4.10) сублимирует. К настоящему времени многочисленными опытами показано, что на интерфейсах $MeWO_4 \mid WO_3$ идут следующие процессы:

- Оксид вольфрама имеет низкую поверхностную энергию ($\alpha \approx 1 \cdot 10^{-5}$ Дж/см² [16,37]) и поэтому легко распространяется по поверхности зёрен MeWO₄, поверхностная энергия которых в несколько раз выше, образуя на поверхности вольфрамата MeWO₄ связную пленку (т.е. образуя композит Максвелловского типа [64]).
- При электролизе WO₃ образуется в виде частиц (зародышей) нанометрового размера, давление пара над которыми, в соответствии с уравнением Томсона-Кельвина [70], выше, чем над плоской поверхностью.
- На интерфейсах $MeWO_4$ WO_3 могут образоваться так называемые неавтономные контактные фазы, MeW-s [20,54,58–60,65], стабилизированные поверхностным взаимодействием между контактирующими веществами. Предположительно, образующаяся фаза MeW-s имеет состав близкий к MeW_2O_7 или $Me_3W_7O_{24}$ [65]. По-видимому,

особенностью фаз MeW-s является их меньшая поверхностная энергия $(\alpha_{\text{MeW-s}})$ по сравнению с фазами MeWO₄ и WO₃:

$$\alpha_{\text{MeW-s}} < \alpha_{\text{WO3}} < \alpha_{\text{MeWO4}}. \tag{4.14}$$

С другой стороны, что чем ниже α , тем меньше величина энергии сублимации, $\Delta H_{cyб\pi}$ и, следовательно, выше давление пара, $P \sim \exp(-\Delta H_{cyб\pi}/RT)$.

В монографии [29] показано, что в некоторых системах основными компонентами газовой фазы, находящимися в равновесии со сложными оксидами, являются соединения, не существующие индивидуально в субсолидусной области (как MeW-s в нашем случае). В частности, одним из основных компонентов, сосуществующих в газовой фазе с PbMoO₄, является молибдат PbMo₂O₇, отсутствующий в субсолидуеной области системы PbO-MoO₃. Аналогично, в газовой фазе над BaWO₄ в значительном количестве присутствуют молекулы BaW_2O_7 [29,30]. Вероятно, состав этих летучих молекул, обогащенный по содержанию WO₃ или MoO₃, соответствует составу неавтономной фазы, обнаруженной на поверхности зерен неочищенных вольфраматах MeWO₄ и на границах фаз MeWO₄ WO₃ [20,54,58-60,65]. Поэтому, учитывая соотношение (4.14) можно полагать, что повышенная скорость испарения WO₃ из прианодной области вызвана именно сублимацией неавтономной фазы MeW-s. В итоге это приводит к практически полному уходу WO₃ в газовую фазу и отсутствию изменению массы анода ($\Delta m_{(+)} = 0$).

Применяя закон Фарадея к уравнению (4.9), и с учетом того, что величина $\Delta m^{(-)}$ равна $\Delta m^{(-)} = m(WO_4^{2-}) - m(1/2O_2) = m(WO_3)$, т.е. массе WO_3 , перенесенного анионами WO_4^{2-} из катодной в анодную секцию, можно рассчитать число переноса ионов WO_4^{2-} :

$$t_{WO_4^{2^-}} = \frac{\Delta m^{(-)}}{M_{WO_3}} \cdot z_{WO_4^{2^-}} \cdot \frac{F}{Q},$$
 (4.15)

где M_{WO3} –молярная масса WO_3 , Z=2, Q – пропущенный заряд, F – число Фарадея.

Данные расчета по формуле (4.15) сведены в таблице 4.2. Поскольку эксперименты по Тубандту с каждым объектом проведены по нескольку раз, то в таблице 4.2 приведены средние значения чисел переноса.

Поскольку для всех изученных MeWO₄ величина $\Sigma t_{uoh} = 1$ [66], то сравнение значений t_{WO4}^{2-} и Σt_{uoh} указывает на наличие еще одного ионного носителя, перенос которого не дает вклада в изменение массы. Очевидно, что этим ионным носителем являются ионы кислорода. Тогда из формулы (4.16)

$$t_{WO_4^{2-}} + t_{O^{2-}} = 1 (4.16)$$

получаем, что

$$t_{WO_4^{2-}} \le t_{O^{2-}} \,. \tag{4.17}$$

Таблица 4.2 Данные по парциальным числам переноса в керамике вольфраматов.

Соединение	$ar{t}_{WO_4^{2-}}$	$ar{t}_{O^{2-}}$
CaWO ₄	0.3	0.7
SrWO ₄	0.2	0.8
BaWO ₄	0.5	0.5

Данный результат согласуется с положением, высказанным ранее, о том, что перенос WO_3 за счет анионов WO_4^{2-} сопровождается высокой подвижностью ионов кислорода O^{2-} [62]. Механизм переноса анионов WO_4^{2-} в вольфраматах был предложен Адамсом на основании компьютерных

расчетов в работах [71,72]. Было показано, что наиболее предпочтительным видом миграции является перенос по непрямому междоузельному механизму (interstitialcy mechanism) (4.18):

$$[WO_4]_i^{"} + [WO_4]_{WO_4}^{X} \to [WO_4]_{WO_4}^{X} + [WO_4]_i^{"}, \qquad (4.18)$$

причем, сам процесс миграции включает несколько промежуточных стадий искажения и переориентации анионов, в связи с чем, механизм миграции был назван авторами «Rock-n-Roll Mechanism». Для реализации такого механизма необходимо образование дефектов анти-Френкеля.

Процесс переноса анионов кислорода в вольфраматах может проходить по вакансионному механизму [62]

$$[WO_4]_{WO_4}^X + [WO_3]_{WO_4}^{\bullet \bullet} \to [WO_3]_{WO_4}^{\bullet \bullet} + [WO_4]_{WO_4}^X, \tag{4.19}$$

в котором кислородные вакансии локализованы на молекулах WO_3 , расположенных в регулярных анионных позициях (дефекты $[WO_3]_{WO_4}^{\bullet\bullet}$). Так как молекулы WO_3 имеют малый объем, то они легко переориентируются, что приводит к уменьшению расстояния ионного перескока аниона O^{2-} с аниона WO_4^{2-} на молекулу WO_3 . Не исключено, что молекулы WO_3 могут располагаться также и в междоузельных позициях. Тогда перенос анионов кислорода может проходить и по прямому междоузельному механизму:

$$[WO_4]_i^{\prime\prime} + [WO_3]_i^{\bullet\bullet} \rightarrow [WO_3]_i^{\bullet\bullet} + [WO_4]_i^{\prime\prime}. \tag{4.20}$$

В настоящее время сложно сказать, какие механизмы являются предпочтительными и для выбора более приемлемого варианта необходимо провести дополнительные исследования или расчеты.

Выводы по главе 4

- Впервые методом Тубандта определена природа основных ионных носителей в вольфраматах $MeWO_4$. Показано, что основными ионными носителями заряда в данных объектах являются анионы O^{2-} и $WO_4^{\ 2-}$.
- Рассчитанные числа переноса показали, что $t_O^{2-} \ge t_{WO4}^{2-}$ (таблица 4.2), что согласуется с данными по энергии и природе химической связи [11] в солеподобных структурах вольфраматов типа шеелита.

Глава 5. ИССЛЕДОВАНИЕ ЭЛЕКТРОПОВЕРХНОСТНОГО ПЕРЕНОСА В СИСТЕМАХ MeWO₄ – WO₃ (Me = Ca, Sr, Ba)

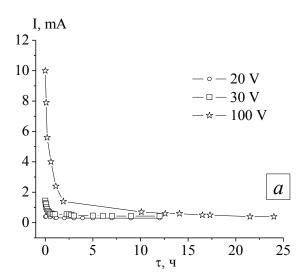
В работе [54] имеются данные по самопроизвольным, не стимулированным электрическим полем процессам массопереноса, осуществляющимся в $CaWO_4|WO_3$. Результаты ячейке экспериментов показали, что WO_3 самопроизвольно распространяется по поверхности керамики вольфрамата кальция, а скорость распространения зависит от морфологии подложки CaWO₄. В результате самопроизвольного распространения WO₃ происходило обогащение поверхности исходной подложки вольфрамата вольфрамом, и по данным ЭСХА атомное соотношение W : Са достигало значения, равного 2.

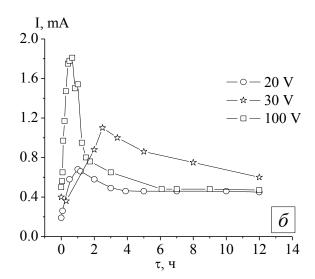
В настоящей работе были проведены аналогичные эксперименты по самопроизвольному переносу оксида вольфрама в ячейках MeWO₄|WO₃ (Ме – Sr, Ba). Методика экспериментов описана в п. 2.2. Полученные результаты оказались похожими на результаты, наблюдаемые ранее в системе CaWO₄|WO₃. К сожалению, не удалось получить чёткой картины изменения масс брикетов после эксперимента из-за легкого их припекания друг к другу. Поэтому оценка результатов эксперимента производилась визуально.

Логическим продолжением исследований в данном направлении было проведение опытов по электроповерхностному переносу в ячейке 2.2 [73–78]. Ранее [54,58–60] подобные эксперименты проводились только для ячейки с CaWO₄, в настоящей работе были проведены опыты для всех вольфраматов MeWO₄ (Me – Ca, Sr, Ba).

Эксперименты проводили по двум методикам:

- в потенциостатическом режиме (при постоянном напряжении на зажимах ячейки);
- в гальваностатическом режиме (в течение эксперимента через ячейку протекал ток постоянной силы);


В потенциостатическом обеспечивается режиме постоянство электрической движущей силы, однако изменение сопротивления ячейки приводит к изменению силы тока, протекающего через ячейку во время опыта. В гальваностатическом режиме обеспечивается постоянство силы тока, который является мерой скорости электрохимического процесса. Мы обеим основной проводили опыты ПО методикам, но массив экспериментальных данных был получен в гальваностатических условиях, тем более что ИЗ литературы [54,58–60] известно лучшей воспроизводимости результатов, полученных по этой методике, в системе CaWO₄|WO₃.


Потенциостатический режим (U = const). Эксперименты в потенциостатических условиях были проведены для ячеек (5.1, 5.2):

$$(-)WO_3|SrWO_4|WO_3(+),$$
 (5.1)

$$(-)WO_3|BaWO_4|WO_3(+)$$
 (5.2)

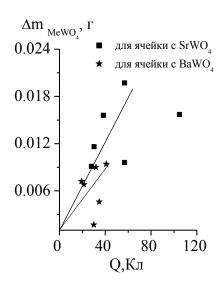

при напряжении равном 20, 30, 100 В. Графики зависимости силы тока от времени приведены для SrWO₄ на рисунке 5.1a и для BaWO₄ на рисунке 5.1b. Можно видеть, что результаты для ячеек (5.1) и (5.2) в целом сходны – тенденция состоит В падении величины тока время эксперимента. Однако на кривых I(t) для (5.2) наблюдается увеличение тока в начале опыта, после которого через 1-3 часа следовал спад тока в 1.5-3 раза. На кривых I(t) для (5.1) сила тока была максимальной именно в первый момент эксперимента, после чего сразу следовал спад тока в 1.5 - 4 раза. Эти данные, возможно, свидетельствуют о различии электрических свойств керамик и природы протекающих процессов.

Рис.5.1 (a, δ) Зависимость изменения величины тока от времени для ячеек: (5.1) ($T = 900^{\circ}$ C, U = const) – (a); (5.2) ($T = 850^{\circ}$ C, U = const) – (δ).

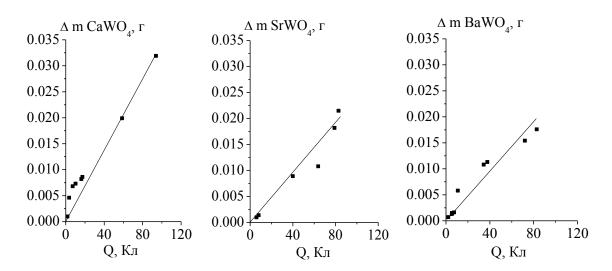

Графики зависимости изменения массы от величины пропущенного заряда представлены на рисунке 5.2. Как видно, данные характеризуются большим разбросом, но, тем не менее, видна тенденция увеличения массы WO_3 перенесенного на внутреннюю поверхность керамики $MeWO_4$ (Δm_{WO3}) с ростом величины прошедшего заряда, Q.

Рис. 5.2 Зависимость прибыли массы SrWO₄ и BaWO₄ от величины заряда, прошедшего через ячейку.

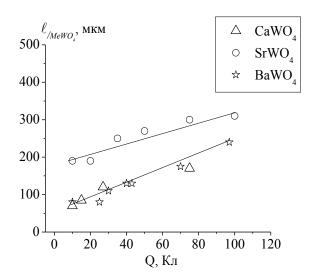
Гальваностатический режим (I = const). В этих экспериментах через ячейку (2.2) пропускали постоянный по величине ток, равный 1 мА. В течение основного периода опытов напряжение на ячейках находилось вблизи U = 100В. Через ячейку был пропущен заряд до 140 Кл. О скорости процесса судили по изменению массы брикетов (Δ m) MeWO₄ и длине окрашенных слоёв на MeWO₄ и WO₃. Данный эксперимент в дальнейшем будем назвать «первичный» опыт. После прохождения постоянного электрического тока через ячейку во всех опытах наблюдалась картина, схожая качественно и количественно для всех MeWO₄:

- при увеличении Q масса WO_3 , перенесённого в керамику $MeWO_4$, возрастает (увеличивается масса $MeWO_4$), рисунок 5.3, а масса катодного брикета WO_3 уменьшается; WO_3 в виде отдельной фазы (что показано $P\Phi A$ при комнатной температуре, рисунок 5.4) заполнял внутреннюю поверхность керамики $MeWO_4$;

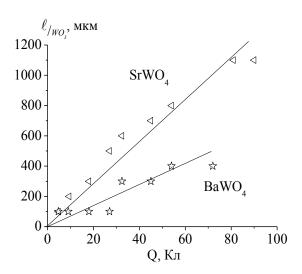
Рис.5.3 Изменение массы керамики MeWO₄ от количества пропущенного электричества; $T = 900^{\circ}$ C (CaWO₄, SrWO₄) и 850° C (BaWO₄), I = const = 1 mA.

Рис. 5.4 Рентгенофазовый анализ поверхностей контактирующих брикетов после эксперимента в электрическом поле (I = const = 1 mA).

- фронт зеленоватого окрашивания брикета $MeWO_4$ (l_{MeWO4} , граница проникновения WO_3) продвигается в сторону (+) электрода, рисунок 5.5 (при


Q = 100 Кл глубина проникновения составляла 200...300 мкм). Как видно, зависимости $l_{\text{MeWO4}}(Q)$ удовлетворительно описываются линейным законом;

- масса анодного брикета $WO_3^{(+)}$ практически не меняется.


В результате часть брикета $MeWO_4$, прилегающая к $WO_3^{(-)}$, превращалась в двухфазный композит (композит I), состоящий из $MeWO_4$ и WO_3 .

Брикеты WO₃, изначально имевшие зеленовато-жёлтую окраску, после эксперимента претерпевают следующие изменения:

- анодный брикет $WO_3^{(+)}$ всегда равномерно светлел на всю толщину, а катодный брикет $WO_3^{(-)}$ становился темно-зелёным. Причем, изменение окраски начиналось с области, прилегающей к $MeWO_4$, и по мере пропускания тока зона потемнения постепенно двигалась по $WO_3^{(-)}$ в направлении (-) - электрода. Толщина зоны изменения окраски $WO_3^{(-)}$ от количества пропущенного электричества, далее обозначенная как l_{WO3} , показана на рисунке 5.6.

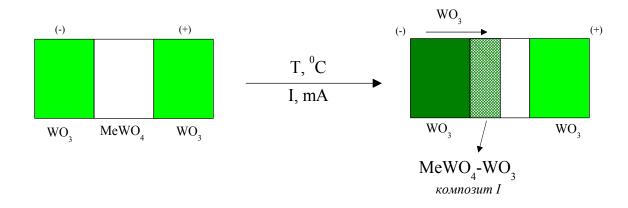
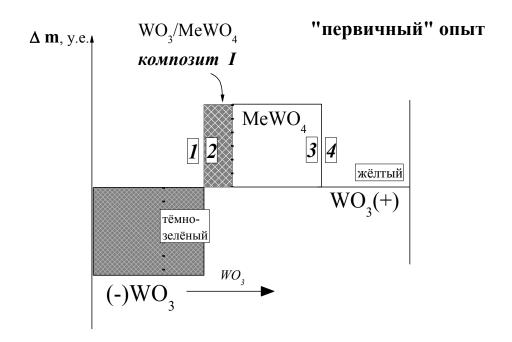


Рис. 5.5 Зависимость толщины окрашенного слоя на брикете MeWO₄ от величины пропущенного заряда, I = const = 1 мA.


Рис. 5.6 Зависимость толщины окрашенного слоя на брикете $WO_3^{(-)}$ от величины пропущенного заряда, I = const = 1 мA.

На рисунке 5.7 схематично показано изменение цвета брикетов до и после эксперимента в электрическом поле.

Рис. 5.7 Схема изменения окраски до и после пропускания через ячейку электрического тока.

Рисунок 5.8 схематично демонстрирует изменение массы брикетов после опытов по электроповерхностному переносу.

Рис. 5.8 Схема изменения массы брикетов после эксперимента по электроповерхностному переносу (цифрами указаны контактирующие поверхности).

При дополнительном отжиге на воздухе в течение 5 ч. при 1000^{0} С окраска анодной секции $WO_{3}^{(+)}$ восстанавливалась до первоначальной, а тёмная окраска катодной секции оставалась без изменений.

В то же время на рентгенограмме $WO_3^{(-)}$ проявляются основные дифракционные максимумы $BaWO_4$ (рис.5.4). Причины необратимого изменения цвета $WO_3^{(-)}$, как и то, почему фронт окраски двигается вдоль брикета WO_3 – полупроводника n-типа, рассмотрим ниже. Отметим лишь, что это косвенно свидетельствует о протекании электрохимического процесса на внутренней поверхности электронного проводника.

Таким образом, в исходной ячейке (2.2) происходили следующие изменения

(-)
$$Pt|WO_3:WO_3(I) | \{WO_3/MeWO_4\}:MeWO_4|WO_3|Pt (+)$$
 (5.3)
$$\ell_{WO_3} | \ell_{MeWO_4}$$

Здесь ℓ_{WO3} - толщина части брикета $WO_3(I)$, изменившей окраску на тёмнозелёную; ℓ_{MeWO4} - толщина части исходного брикета $MeWO_4$, пропитанной оксидом вольфрама. Эта часть представляет собой метакомпозит $\{WO_3/MeWO_4\}$. Символ «:» показывает условные границы между указанными частями брикетов.

Для количественной оценки результатов опытов по электроповерхностному переносу WO_3 был рассчитан параметр электрической эффективности электроповерхностного переноса (χ), ранее предложенный в работе [38].

$$\chi = \frac{\Delta m_{WO_3}}{M_{WO_2}} \cdot z \cdot \frac{F}{Q},\tag{5.4}$$

где Δm_{WO3} - масса перенесенного оксида вольфрама, M_{WO3} - молярная масса оксида вольфрама, z —заряд подвижной частицы (если заряд и массу переносит анион WO_4^{2-} , то z=2), Q — прошедший через ячейку заряд. Отметим, что это выражение получено в предположении, что весь протекающий ток участвует в переносе оксида вольфрама. Параметр χ показывает число эквивалентов WO_3 ($\Delta m \cdot z/M$), перенесенных зарядом, равным 1 Фарадею (Q/F — прошедший электрический заряд, выраженный в единицах числа Фарадея). С другой стороны, данный параметр может быть рассмотрен как мера выхода по току электрохимического процесса. В последнем случае его величина не должна превысить единицу.

Результаты расчетов по данным, представленным на рисунке 5.3, показали, что для ячеек $WO_3|CaWO_4|WO_3$, $WO_3|SrWO_4|WO_3$ и $WO_3|BaWO_4|WO_3$ параметр χ равен 0.26 ± 0.02 , 0.20 ± 0.02 и 0.20 ± 0.02 , соответственно. Как видно, значения параметра χ оказались близкими по значению, что говорит о сходстве транспортных свойств поверхности керамики для всех изученных

вольфраматов. Кроме того, было установлено [54], что электрическая эффективность процесса мало зависит от пористости брикетов.

5.1. Механизм процессов, протекающих на границе раздела WO_3 | $MeWO_4$ (Me-Ca, Sr, Ba)

Анализ данных, описанных в литературном обзоре и полученных в настоящей работе, указывает на то, что основной причиной необычных спонтанных и индуцированных полем процессов, протекающих на границе раздела WO₃|MeWO₄, является образование неавтономных контактных фаз (обозначаемых в зарубежной литературе термином «interphase» [28]). Неавтономные фазы не могут существовать в самостоятельном виде, а образуются на границах раздела фаз В результате межфазного поверхностного взаимодействия. Толщина слоя таких фаз не может быть большой, так как она определяется характерной глубиной, на которую распространяется контактное поверхностное взаимодействие. В качестве примера фаз рассматривать адсорбированные таких ОНЖОМ поверхностные фазы Шилова [79], метастабильные состояния с необычными физико-химическим свойствами, обнаруженные в нанокомпозитах [80] или на границах зерен в металлических системах [81].

В системах $MeWO_4$ – WO_3 также образуются неавтономные фазы, условно обозначенные как MeW-s, локализованные на границах раздела WO_3 | $MeWO_4$. Фазы MeW-s имеют высокую O^{2-} - ионную доминирующую проводимость ($\approx 10^{-1}$ Cm/cm при 900^0 C).

В настоящей работе химический и фазовый состав приграничных областей $MeWO_4$ и WO_3 до и после эксперимента был изучен с помощью комплекса методов: $P\Phi A$, электронной спектроскопии для химического анализа (ЭСХА), сканирующей электронной микроскопии с энергодисперсионным анализом (СЭМ-ЭДА), методом рентгенофлуоресцентного анализа (РФЛА), а также методом эмиссионной спектроскопии тлеющего разряда (ЭСТР).

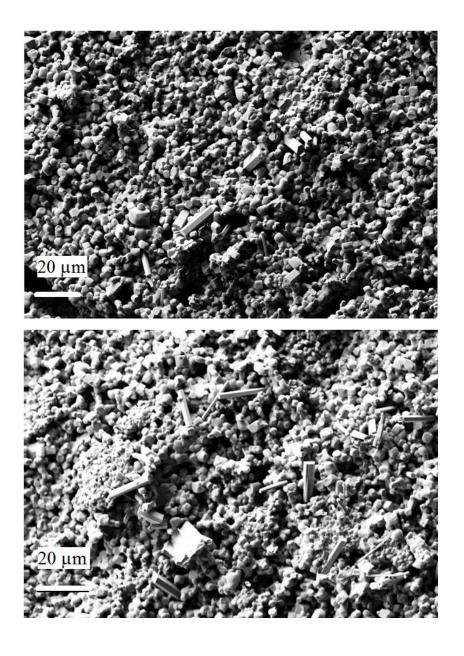
Перепишем исследуемую ячейку (2.2) вновь и пронумеруем для удобства контактные поверхности:

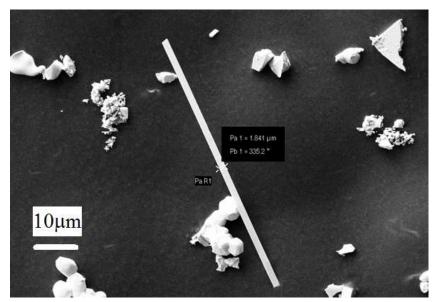
(-) Pt
$$|WO_3|_1$$
 MeWO₄ $|_3|_4$ WO₃ Pt \oplus . (5.5)

После опыта ячейку разбирали, а отмеченные контактные поверхности и прилегающие к ним области подвергали комплексному исследованию.

Акцентируем внимание на результатах, демонстрирующих взаимопроникновение компонентов поверхностной фазы MeW-s в брикеты MeWO₄ и WO₃.

На дифрактограмме, полученной от поверхности $\underline{\mathbf{1}}$ (WO₃⁽⁻⁾) четко виден наиболее интенсивный (112) пик фазы BaWO₄ (PФA). На этой же поверхности методами ЭСХА обнаружены ионы Me²⁺, соотношение [W]:[Me] \approx 13:1. Существование ионов Me²⁺ (Me = Ca, Sr) на поверхности $\underline{\mathbf{1}}$ и прилегающей к ней области брикета WO₃⁽⁻⁾ подтверждается методом РФЛА, эти результаты являются наиболее значимыми и потому отдельно показаны в таблице 5.1.


Приведенные данные указывают на миграцию Me^{2+} по границам зерен электронного проводника WO_3 . В связи с этим необратимое изменение цвета брикета $WO_3^{(-)}$, скорее всего, связано с частичным восстановлением поверхности WO_3 до вольфрамовой бронзы


$$WO_3 + xMe^{2+} + 2xe^{-} \rightarrow Me_xWO_3. \tag{5.6}$$

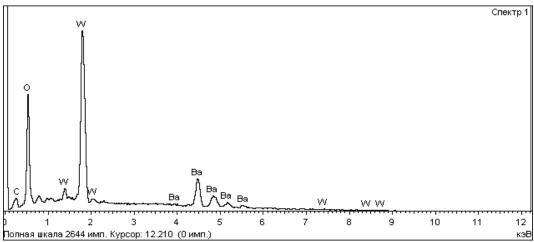

Действительно, по данным СЭМ, в брикете WO₃ после пропускания тока обнаружены монокристаллические частицы вытянутой формы, резко отличающейся от остальных частиц. Можно предположить, что эти частицы относятся к образующимся бронзам, а вытянутая форма наблюдаемых выделений, рисунок 5.9, обусловлена высокой степенью тетрагональности их структуры (c/a >> 1).

Таблица 5.1 Данные ренгенофлуоресцентного анализа (РФЛА) брикетов $WO_3^{(-)}$ после опытов по электроповерхностному переносу

Место съемки	Содержание Me ²⁺ , масс %
Поверхность контакта с CaWO ₄	0.18
Сошлифовано 180 мкм	0.11
Поверхность контакта с SrWO ₄	0.12
Сошлифовано 70 мкм	0.11

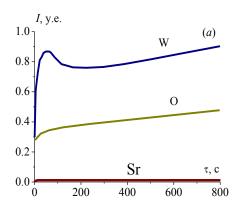


Рис. 5.9 СЭМ изображения сечения брикета WO₃⁽⁻⁾ после эксперимента по электроповерхностному переносу в ячейке (2.2) с BaWO₄, а также спектр ЭДА, иллюстрирующей наличие ионов Ва в образце WO₃ после эксперимента.

Вид концентрационных профилей (рисунок 5.10), полученных послойным анализом контактной поверхности $WO_3^{(-)}$ (граница $\underline{\mathbf{1}}$) методом ЭСТР, также указали на проникновение ионов Sr^{2+} в брикет $WO_3^{(-)}$, после опыта по электроповерхностному переносу в ячейке (2.2) со $SrWO_4$.

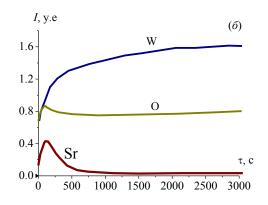
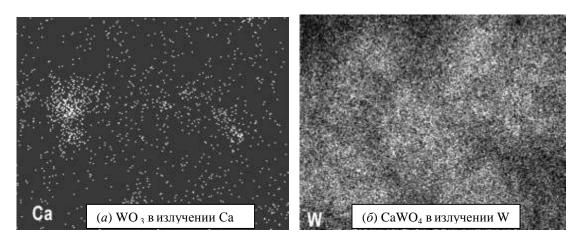



Рис. 5.10 Концентрационные профили послойного анализа брикета WO₃ методом ЭСТР (эмиссионной спектроскопии тлеющего разряда). На рисунках показаны данные послойного травления WO₃ атомами аргона: (*a*) − без наложения градиента электрического потенциала (глубина кратера травления ~ 50 мкм); (*б*) - при наложении градиента электрического потенциала (глубина кратера травления ~ 70 мкм).

Из фотографий, полученных методом СЭМ-ЭДА, в характеристическом рентгеновском излучении Са с брикета WO_3 в области границы $\underline{\mathbf{1}}$, представленных на рис. 5.11(a), также видно, что катионы кальция присутствуют в образце в заметном количестве.

На поверхности зерен MeWO₄ (граница $\underline{2}$) обнаружена фаза WO₃ (визуально, а также методами ЭСХА и РФА). Также, на поверхности $\underline{2}$, по данным РФА, наблюдали изменение соотношения интенсивностей основных пиков WO₃, что указывает на значительное изменение микроструктуры WO₃, находящегося на внутренней поверхности керамики MeWO₄. На рисунке 5.12 представлено СЭМ-изображение сечения брикета CaWO₄ после ЭПП. Этот рисунок демонстрирует границу пропитанной области оксидом вольфрама образца CaWO₄, ширина которой составляет порядка $\frac{1}{4}$ от всей толщины брикета (толщина брикета в опыте ~ 2 мм).

Рис.5.11 (a, δ) Фотографии в характеристическом рентгеновском излучении Са и W. (a) - WO₃ в излучении Са, (δ) - CaWO₄ в излучении W.

 $CaWO_4$ Сторона $CaWO_{q^2}$ контактировавшая $c\ WO_3^{(4)}$

Композитная часть брикета CaWO

Рис.5.12 СЭМ изображение скола брикета $CaWO_4$ после контакта cWO_3 в электрическом поле ($T=900^{0}$ C, I=1 mA).

Далее, перейдем к анализу механизма процессов, сопровождающих явление электроповерхностного переноса. Как было указано в главе 4, в керамических образцах вольфраматов щелочноземельных металлов проводимость осуществляется одновременно анионами WO_4^{2-} и ионами кислорода O^{2-} . При добавлении уже малых количеств WO_3 проводимость

резко возрастает за счет образования неавтономной фазы MeW-s, обладающей высокой кислородно-ионной проводимостью. Кислородно-ионная проводимость вольфраматов обусловлена наличием молекул WO₃, растворённых в кристаллической решетке и находящихся в регулярных узлах или междоузлиях (дефекты $[WO_3]_{WO4}^{\bullet\bullet}$ или $[WO_3]_i^{//}$, соответственно); механизм переноса анионов кислорода описывается уравнениями (4.19-4.20).

Можно ожидать, что в результате межфазного взаимодействия на контакте фаз $WO_3|MeWO_4$ будет происходить частичное взаимное проникновение компонентов в кристаллическую структуру соседних фаз, что приведёт к накоплению молекул WO_3 в приконтактной области $MeWO_4$, сегрегации катионов на границе раздела фаз и росту концентрации анионов WO_4^{2-} в приконтактной области WO_3 . При достаточно сильном поверхностном взаимодействии концентрации частиц, перешедших в соседнюю фазу, становятся высокими. В результате изменяются структура и другие физикохимические свойства WO_3 и $MeWO_4$ в области контакта фаз, а пространственная область с измененными характеристиками может быть идентифицирована как неавтономная фаза MeW-s.

Вернемся к ячейке (5.3). В начале эксперимента неавтономная фаза MeW-s самопроизвольно образуется на контакте фаз между плоскостями $\underline{\mathbf{1}}$ и $\underline{\mathbf{2}}$. В атмосфере воздуха, с момента включения тока на границе $\underline{\mathbf{1}}$ начинает идти ионизация WO_3

(-)WO₃ +1/2 O₂ + 2e[/]
$$\rightarrow$$
 (WO₄)²⁻. (5.7)

Анионы WO_4^{2-} , образующиеся на границе $\underline{\mathbf{1}}$, перемещаются через электролит MeW-s на границу $\underline{\mathbf{2}}$ в направлении к MeWO₄. Параллельно происходит образование ионов кислорода в процессе (5.6)

$$WO_4^{2-} \to WO_3 + O^{2-},$$
 (5.8)

не включающем стадию электронного переноса. На межзеренных гранях и в объеме MeWO₄, по-видимому, небольшое имеется количество адсорбированных или растворённых молекул WO₃ и образующиеся ионы кислорода переносятся ПО кооперативным механизмам (4.19-4.20),описанным в главе 4, вдоль межзеренных границ (или через объем кристаллитов) MeWO₄ на плоскость 3, где разряжаются до молекулярного кислорода по реакции (4.8): $O^{2-} \rightarrow 1/2O_2 + 2e$.

Молекулы WO_3 накапливаются на границе $\underline{\mathbf{1}}$ и начинают внедряться вдоль границ зерен в керамический образец вольфрамата, образуя фазу MeWs, причем содержание WO_3 , а следовательно, и глубина распространения фазы, в композите увеличивается пропорционально количеству образованных при электролизе ионов WO_4^{2-} .

С положительной границы полуячейки (5.9)

$$(-)WO_{3} | MeW-s |_{2} MeWO_{4}(+)$$
 (5.9)

в сторону WO₃ в электрическом поле будут мигрировать катионы Me²⁺. Так как WO₃ является электронным проводником, то под действием приложенного напряжения возможно протекание катодной реакции (5.4) с образованием металл-вольфрамовых бронз. С химической точки зрения это означает, что Ме растворяется в матрице WO₃, приводя к частичному восстановлению оксида, образуя фазу тетрагональной W-бронзы [67,82]. Так как при этом часть ионов W⁶⁺ понижет степень окисления до W⁵⁺ (W⁶⁺ + e[/] \rightarrow W⁵⁺), то окраска брикетов меняется на темно-зеленую (рисунок 5.7), а граница окрашивания постепенно двигается к (-) | Pt границе. В связи с этим изменение цвета брикета WO₃ | и связано с частичным восстановлением поверхности зерен WO₃ до вольфрамовой бронзы состава Ме_xWO₃.

Интеркаляция ионов Me^{2+} (Ca, Sr, Ba) в $WO_3^{(-)}$ диск, вызывающая изменение его окраски с природной на зелено-желтую, была показана выше с помощью 5-ти независимых методик: РФА, РФЛА, ЭСХА, СЭМ-ЭДА и ЭСТР.

В настоящей работе показано, что если после эксперимента по электроповерхностному переносу поменять полярность ячейки, то все наблюдаемые процессы, начинают идти в обратном направлении. Это явление было названо «обратимость» электроповерхностного переноса, а сам эксперимент «вторичным».

5.2. Обратимость электроповерхностного переноса

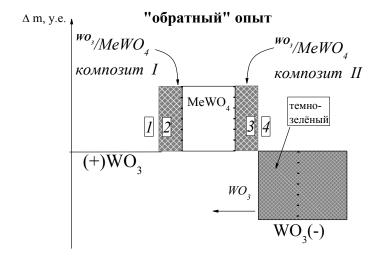
После разборки ячейки, рисунки 5.7 и 5.8, и определения изменения массы её частей, собирали ячейку вновь, но при этом меняли полярность на противоположную (+/-), т.е. $WO_3^{(-)}$ – секция стала $WO_3^{(+)}$, а бывшая $WO_3^{(+)}$ секция стала $WO_3^{(-)}$ -секцией

$$WO_{3}^{(-)} \rightarrow WO_{3}^{(+)}$$

 $WO_{3}^{(+)} \rightarrow WO_{3}^{(-)}$, (5.10)

т.е. после этого имеем ячейку

(+)
$$Pt|WO_3:WO_3(I)_{\underline{1}}|_{\underline{2}}\{WO_3/MeWO_4\}:MeWO_{4\underline{3}}|_{\underline{4}}WO_3|Pt(-),$$
 (5.11)


где $WO_3(I)$ – часть брикета WO_3 , содержащая интеркалированные ионы Me^{2^+} . Начиная обратный эксперимент, абсолютные массы всех дисков, полученные после первичного опыта, примем за новую нулевую точку отсчета.

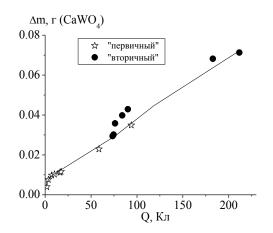
После включения напряжения с полярностью (+/-) наблюдаем следующие изменения:

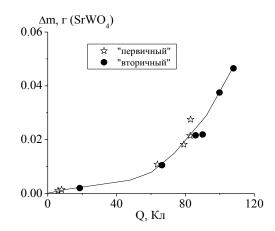
- (*a*) Масса части ячейки (5.11), содержащей вольфрамат $\{WO_3/MeWO_4\}$: $MeWO_4$, продолжает расти, а масса $WO_3^{(-)}$ диска (бывшего в прямом опыте $WO_3^{(+)}$ -диском) уменьшается по мере прохождения заряда, т.е. изменение массы секций происходит аналогично показанному ранее на рисунке 5.8.
- (б) Ранее бывшая катодной, а теперь ставшая анодной, левая секция WO_3 постепенно светлеет, приближаясь к характерной для чистого WO_3 бледнозеленой (салатной) окраске. Напротив, бывший $WO_3^{(+)}$ диск, ставший теперь $WO_3^{(-)}$ диском, теряет массу и постепенно меняет цвет до темно-зелёного.
- (в) Теперь мы имеем 2 композитные области: $\{WO_3/MeWO_4\}\ (I)$ слева, оставшуюся от «первичного» эксперимента, и, правую $\{WO_3/MeWO_4\}\ (II)$, образующуюся в результате «вторичного» опыта.

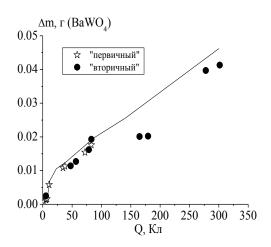
Другими словами, происходило полное обращение картины и механизма процесса, наблюдавшегося в «первичном» опыте.

Схема изменения окраски и массы брикетов иллюстрируется рисунком 5.13.

Рис. 5.13 Схема изменения массы и цвета секций ячейки (2.2) после «вторичного» эксперимента.


Убыль массы $WO_3^{(-)}$ -диска, углубление его зеленой окраски, прибыль массы диска $MeWO_4$ и появление в правой его части композитной области (II), $\{WO_3/MeWO_4\}$, по своему механизму совпадают с процессами, описанными выше для «первичного» опыта. Механизм «осветления» левого $WO_3^{(+)}$ -диска связан с протеканием обратной реакции деинтеркаляции


$$Me_xWO_3 \to xMe^{2+} + 2xe^{/} + WO_3,$$
 (5.12)


с образованием катионов Me^{2+} , которые мигрируют в электрическом поле в композит (I) и фазу MeW-s. В результате, концентрация ионов Me^{2+} ранее интеркалированных в фазе $(Me_xWO_3)^{(+)}$ падает, что приводит к осветлению окраски фазы $WO_3^{(+)}$.

Результаты по изменению масс брикетов $MeWO_4$ на обоих стадиях проиллюстрированы на рисунках 5.14. Можно видеть, что зависимости $\Delta m(Q)$ для «первичного» и «вторичного» процессов практически совпадают.

Данный результат дополнительно свидетельствует в пользу корректности предложенной модели «обратимости» электроповерхностного переноса.

Рис. 5.14 Зависимость массы WO_3 , перенесенного в керамику $MeWO_4$ от количества электричества в «первичном» и «вторичном» опытах; $900^{\circ}C$ ($CaWO_4$, $SrWO_4$), и $T=850\,^{\circ}C$ ($BaWO_4$), I=const=1 мА.

Итак, обнаружено, индуцированный электрическим ЧТО полем электроповерхностный перенос через границу раздела $(-/+)WO_3|MeWO_4(+/-)$ При полярности (-/+), в процессом. обратимым «первичном» эксперименте, макроколичества WO_3 из брикета WO_3 (-) втягиваются в (+) направлении на внутреннюю поверхность MeWO₄, образуя метакомпозит {WO₃/MeWO₄}. Одновременно происходит двухфазный интеркаляция Me^{2+} в структуру электронного полупроводника $WO_3(-)$.

Ключевая роль в механизме явления ЭПП принадлежит неавтономной электролитической фазе MeW-s, образующейся на контакте WO₃|MeWO₄. Перенос WO₃ в (+) направлении вызван восстановлением WO₃ на границе с MeW-s до анионов (WO₄)²⁻, которые диспропорционируют, с образованием анионов кислорода и WO₃. Анионы кислорода легко мигрируют вдоль границ зёрен или через объем керамики, а WO₃ втягивается на внутреннюю поверхность керамики MeWO₄ в виде фазы MeW-s. Одновременно идет электрохимическая интеркаляция катионов Me²⁺ в керамику WO₃ с образованием окрашенной фазы вольфрамовой бронзы Me_xWO₃. После завершения «первичного» опыта и переключения полярности масса диска

МеWO₄ продолжает расти за счет внедрения WO₃ с противоположной стороны и образования второй композитной $\{WO_3/MeWO_4\}$ области. В итоге диск MeWO₄ приобретет симметричное строение $(WO_3/MeWO_4:MeWO_4:MeWO_4/WO_3)$. Левый диск WO₃, бывший после «первичного» опыта тёмно-зеленым, во «вторичном» опыте постепенно светлеет до природной салатной окраски, т.е. из него деинтеркалируется ионы Me^{2+} . Напротив, изначально светлый, жёлто-зелёный правый диск WO_3 приобретает во «вторичном» опыте тёмно-зеленую окраску за счёт внедрения Me^{2+} . Установлено, что зависимости изменений масс дисков от величины прошедшего заряда для "первичного" и "вторичного" процессов практически совпадают.

Выводы по главе 5

Комплексом методов показано, что в спонтанных условиях и при наложении электрического поля на гетерофазных интерфейсах $WO_3|MeWO_4|$ (Me = Sr, Ba) происходит взаимопроникновение компонентов WO_3 и MeWO₄.

- 1. Проведено сопоставление экспериментальных данных по электроповерхностной миграции в потенциостатическом и гальваностатическом режимах. Показано, что количество WO₃, перенесенного на внутреннюю поверхность керамики MeWO₄, определяется величиной электрического заряда, прошедшего через систему, но не зависит от *I-U*-параметров эксперимента.
- 2. Установлено, что при $850-900^{\circ}$ С величина Фарадеевской эффективности переноса WO_3 в электрическом поле (χ) близка для всех $MeWO_4$ (Me=Ca, Sr, Ba) и составляет $0.20...0.26\pm0.02$ для гальваностатического режима процесса.
- 3. Обнаружено, что индуцированный электрическим полем электроповерхностный перенос через границу раздела фаз (-/+)WO₃|MeWO₄(+/-) является обратимым процессом.

4. Комплексом методов РФА, ЭСХА, СЭМ-ЭДА, РФЛА и ЭСТР изучены свойства и состав областей, прилегающих к интерфейсу WO₃|MeWO₄, после опытов в стимулированном электрическим полем режимах. Получены данные, подтверждающие реальность образования «неавтономной фазы MeW-s» и её ключевую роль в природе и механизме процессов на гетерофазной границе раздела WO₃ | MeWO₄. Строение этой границы можно изобразить следующей схемой WO₃:MeW-s | MeW-s:MeWO₄, отображающей проникновение MeW-s в оба исходных брикета.

ЗАКЛЮЧЕНИЕ

В настоящей работе впервые проведено систематическое исследование транспортных и физико-химических свойств бинарных систем $MeWO_4-WO_3$ (Me – Ca, Sr, Ba)

- 1. Впервые исследована проводимость и определены числа переноса в керамических образцах вольфраматов MeWO₄ (Me = Ca, Sr, Ba), очищенных от примесей WO₃. С использованием метода Тубандта установлено, что основными носителями тока в вольфраматах являются анионы WO₄²⁻ и O²⁻.
- 2. Впервые проведено систематическое исследование транспортных и физико-химических свойств, определены числа переноса ионов кислорода в композитах (1-x)MeWO₄-xWO₃ (Me = Ca, Sr, Ba). Обнаружено, что уже при малых значениях WO_3 ($x \sim 0.01-0.02$) в композитах наблюдается резкий рост кислородно-ионной проводимости, при дальнейшем увеличении концентрации WO₃ до x = 0.1 (для Me = Ca) и x = 0.2 (для Me = Sr, Ba) ионная проводимость незначительно. Поскольку изменяется исследуемые вольфраматы являются диэлектриками, а оксид вольфрама полупроводником эти системы ОНЖОМ отнести К классу метакомпозитов п-типа, TO {MeWO₄-WO₃}, ионная проводимость в которых возникает вследствие распространения WO₃ вдоль границ зерен MeWO₄ и образования на границе MeWO₄|WO₃ неавтономной контактной фазы MeW-s. При увеличении содержания WO_3 выше порога перколяции ($x \ge 0.3$) в композитах наблюдается рост проводимости и изменение характера проводимости с ионного на электронный.
- 3. Установлено, что в самопроизвольных условиях и при наложении электрического поля в бинарных системах MeWO₄–WO₃ (Me = Ca, Sr, Ba) происходит взаимопроникновение компонентов вдоль гетерофазных границ WO₃|MeWO₄. Экспериментально показано, что при электроповерхностной миграции как в потенциостатическом, так и в гальваностатическом режимах количество WO₃, перенесенное на внутреннюю поверхность керамики

MeWO₄, определяется величиной электрического заряда, прошедшего через систему.

- 4. Установлено, что величина фарадеевской эффективности электроповерхностного переноса WO_3 в электрическом поле (χ) близка для всех $MeWO_4$ и при 900^0C составляет 0.20-0.26. Обнаружено, что электроповерхностный перенос WO_3 вдоль границ зерен вольфраматов щелочных металлов является обратимым процессом.
- 5. Комплексом методов (РФА, ЭСХА, СЭМ-ЭДА, РФЛА, ЭСТР) изучены свойства и состав областей, прилегающих к границам раздела MeWO₄ | WO₃, после опытов в стимулированном электрическим полем режимах. Полученные данные подтверждают образование неавтономной фазы MeW-s на гетерофазной границе MeWO₄ | WO₃ и её ключевую роль в природе и механизме процессов переноса в композитах MeWO₄–WO₃ (Me = Ca, Sr, Ba).

Благодарности

Автор выражает глубокую благодарность своему научному руководителю д.х.н. Уварову Н.Ф. за помощь в обсуждении полученных результатов и написании текста диссертации.

Выражается благодарность сотрудникам

ИЕНиМ УрФУ: Кочетовой Н.А., Кузнецову Д.К., Короне Д.В., Горбунову В.А., Селезнёвой Н.А., Котенёвой Е.А.;

ИВТЭ УрО РАН: Антонову Б.Д., Бронину Д.И., Вовкотруб Э.Г.,

Шкерину С.Н.;

Имет УрО РАН: Шуняеву К.Ю.

ИЭФ УрО РАН: Мурзакаеву А.М.

ИХТТМ СО РАН: Улихину А.С.

за помощь в проведении экспериментов и обсуждении результатов работы.

Список литературы

- 1. Miller, R.C. Harmonic generation and mixing of CaWO₄:Nd³⁺ and ruby pulsed laser beams in piezoelectric crystals / R.C. Miller, A. Savage // Physical Review. 1962. V.128. P. 2175–2179.
- Shappirio, J.R. Metallic scattering centers in CaWO₄ laser crystals / J.R. Shappirio, T.R. AuCoin, J.G. Gualtieri 1 // J. Appl. Phys. 1963. V. 34. P. 3643–3644.
- 3. Vlassopoulos, A.D. Zeeman effects in the output of a Nd³⁺ doped CaWO₄ laser at room temperature: Master's Thesis, Rice University / A. D. Vlassopoulos. Houston, Texas, 1968. Режим доступа: http://hdl.handle.net/1911/89133.
- 4. Faure, N. Optical properties and laser performance of neodymium doped scheelites CaWO₄ and NaGd(WO₄)₂ / N. Faure, C. Borel [et al.] // Applied Physics B. 1996. V.63. P. 593–598.
- Воронько, Ю.К. Исследование структурного разупорядочения в кристаллах YVO₄, GdVO₄ и CaWO₄ методом спектроскопии комбинационного рассеяния света / Ю.К. Воронько, А.А. Соболь, В.Е. Шукшин [и др.] // Физика твердого тела. 2009. Том 51. № 9. С.1776–1782.
- 6. Ivleva, L.I. $SrWO_4:Nd^{3+}$ new material for multifunctional lasers / L.I. Ivleva, T.T. Basiev, I.S. Voronina, P.G. Zverev [et al.] // Optical Materials. 2003. V.23. P.439-442.
- 7. Voronina, S. Active raman media: SrWO₄:Nd³⁺, BaWO₄:Nd³⁺. Growth and characterization / S. Voronina, L. I. Ivleva, T. T. Basiev, P. G. Zverev [et al.] // Journal of Optoelectronics and Advanced Materials. 2003. V. 5. №4. P. 887–892.
- 8. Autrata, R. Cathodoluminescent efficiency of $Y_3Al_5O_{12}$ and $YAlO_3$ single crystals in dependence on Ce³⁺ and other dopants concentration / R. Autrata,

- P. Schauer, Jo. Kvapil, Ji. Kvapil // Crystal Research and Technology. 1983. V. 18. P. 907–913.
- Tomiki, T. Optical Spectra of Y₃Al₅O₁₂ and YAlO₃ in VUV / T. Tomiki, F. Fukudome, M. Kaminao [et al.] // Journal of the Physical Society of Japan. 1986. V. 55. № 6. P. 2090–2091.
- 10.Özen, G. Upconversion dynamics in Pr-doped YAlO₃ and Y₃Al₅O₁₂ laser crystals / G. Özen, O. Forte, B. Di Bartolo // Optical Materials. 2005. V. 27. P. 1664–1671.
- 11. Нейман, А. Я. Явления электро- и массопереноса и сопряженные процессы в сложных кислородных соединениях с амфотерным характером проводимости: дис. ... д-ра хим. наук: 02.00.04 / Нейман Аркадий Яковлевич. Свердловск, 1989. 354 с.
- 12.Кононюк, И.Ф. О роли межкристаллитной диффузии в кинетике твердофазных реакций / И.Ф. Кононюк, В.В. Вашук, А.С. Ляшевич // Изв. АН СССР. Неорган. материалы. 1978. Т.14. №1. С. 5–8.
- 13. Жуковский, В.М., Ткаченко Е.В., Нейман А.Я., Петров А.Н. Взаимосвязь природы дефектообразования и механизмов реакционной диффузии при твердофазном синтезе сложных оксидов / Жуковский В.М., Ткаченко Е.В., Нейман А.Я. [и др.] // Докл. Акад. Наук. 1975. №4. С. 850–853.
- 14. Jander, W. Reactions in the solid state at high temperature / W. Jander // Z. Anorg. Allg. Chem. 1927. V.163. № 1.
- 15. Jander, W. Systeme der PbO₃-MoO₃ und PbO₃-WO₃ / W. Jander // Z. Anorg. Allg. Chem. 1928. V. 174. \mathbb{N} 11.
- 16.Knözinger, H. Toward supported oxide catalyst via solid-solid wetting / H.
 Knözinger, E. Taglauer / A specialist periodical report // Catalysis. –
 1993. V. 10. P.1–40.
- 17.Петров, И.Я. Структура и каталитические свойства нанесенных оксидномолибденовых, оксиднованадиевых и оксиднохромовых катализаторов дегидрирования углеводородов / Петров И.Я., Трясунов

- Б.Г. // Вестник Кузбасского государственного технического университета. 2008. N_2 3. С. 136–143.
- 18.Вашук, В.В. Исследование кинетики и механизма реакций твердофазного синтеза вольфраматов кальция и бария: дисс. ... канд. хим. наук: 02.00.04 / Вашук Владимир Васильевич. Минск, 1976. 179 с.
- 19.Нейман, А.Я. Электроповерхностный перенос в системе $CaWO_4|WO_3$ / А.Я. Нейман, Е.Ю. Конышева // Электрохимия. 1998. Т.34. С. 272—279.
- 20.Нейман, А.Я. Проводимость и числа переноса метакомпозитов {MeWO₄·WO₃} (Me-Ca, Sr, Ba) / А.Я. Нейман, Н.Н. Пестерева, А.Р. Шарафутдинов, Ю.П. Костиков // Электрохимия. 2005. Т. 41. № 6. С. 680–693.
- 21.Liang, C.C. Conduction Characteristics of the Lithium Iodide-Aluminum Oxide / C.C. Liang // Solid Electrolytes J. Electrochem. Soc. 1973. V. 120(10). P. 1289–1292.
- 22.Liang, C.C. / Liang C.C., Joshi A.V., Hamilton N.E. // J. Appl. Electrochem. 1978. V.8. P. 445–454.
- 23. Костикова, Г.П. Химические процессы при легировании оксидов / Г.П. Костикова, Ю.П. Костиков. Санкт-Петербург: Издательство С.-Петербургского Университета, 1997. 156с.
- 24. Уваров, Н.Ф. Композиционные твердые электролиты в системе AgI-Al₂O₃ / Н.Ф. Уваров, Э.Ф. Хайретдинов, Н.Б. Братель // Электрохимия. 1993. Т. 29. №11. С.1406-1410.
- 25. Уваров, Н.Ф. Ионная проводимость твердофазных нанокомпозитов: дисс. ... докт. хим. наук: 02.00.21 / Уваров Николай Фавстович. Новосибирск, 1998. 335 с.
- 26.Федоров, С.В. Смачивание и электропроводность керамических композитов $BiVO_4 V_2O_5$ / С.В. Федоров, В.В. Белоусов // Электрохимия. 2009. Т. 45. № 5. С. 609–611.

- 27. Agrawal, R.C. Transport property and battery discharge characteristic studies on 1–x(0.75Agl:0.25AgCl):xAl₂O₃ composite electrolyte system / R.C. Agrawal, R.K. Gupta // Journal of Materials Science. 1995. V. 30. P. 3612–3618.
- 28.Maier, J. Ionic transport in nano-sized systems / J. Maier // Solid State Ionics. 2004. V. 175. P. 7–12.
- 29. Казенас, Е.К. Испарение оксидов / Е.К. Казенас, Ю.В. Цветков. М.: Наука, 1997. 543 с.
- 30. Казенас, Е.К. Термодинамика испарения двойных оксидов / Е.К. Казенас. Москва: Наука, 2004. 551 с. ил.
- 31.Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distance in halides and chalcogenides / R. D. Shannon // Acta Crystallographica. 1976. V. 32. P. 751–767.
- 32. Григорьева, Л.Ф. Диаграммы состояния систем тугоплавких оксидов / Л.Ф. Григорьева. Ленинград: Наука, 1988. Ч.4. С. 348.
- 33. Боресков, Г.К. Гетерогенный катализ / Г.К. Боресков. М.: Наука, 1986. 304 с.
- 34. Болдырев, А.И. Физическая и коллоидная химия: Учебное пособие / А.И. Болдырев. М.: Высшая школа, 1974. 504 с.
- 35.Франк-Каменецкий, Д.А. Основы макрокинетики. Диффузия и теплопередача в химической кинетике: Учебник-монография / Д.А.
 Франк-Каменецкий. 4-е изд. Долгопрудный: ИД "Интеллект", 2008. 408 с.
- 36. Третьяков, Ю.Д. Твердофазные реакции: Монография / Ю.Д. Третьяков. М.: Химия, 1978. 360 с.
- 37. Overbury, S.H. Surface composition of binary systems / S.H. Overbury, P.A. Bertrand, G.A. Somortjai // Chem. Rev. 1975. V.75. P.547–551.
- 38.Нейман, А.Я. Электрохимический подход к твердофазным реакциям и межфазным транспортным процессам / А.Я. Нейман, А.Ф. Гусева // Электрохимия. 1993. №11. С. 1388–1395.

- 39. Youchang, X. Solid-solid adsorption / X. Youchang, G. Linlin, L. Yingjun [et. al] // Adsorption and Catalysis on Oxide Surfaces: Proceedings of a Symposium, Brunel University, Uxbridge. 1984. P. 139–148.
- 40.Leyrer, J. Solid-state interactions monolayer formation in MoO₃/Al₂O₃ physical mixtures / J. Leyrer, M.I. Zaki, H. Knosinger // J. Phys. Chem. 1986. V.90. P. 4775–4780.
- 41.Margraf, R. Supported oxide catalysis preparation and physical characterization / Margraf R., Leyrer J., Taglauer E., Knosinger H. // React. Kinet. Catal. Lett. 1987. V.35. №1-2. P. 265–269.
- 42.Margraf, R. Study of molybdate dispersion on supported catalysts using ion scattering and Raman spectroscopy / R. Margraf, J. Leyrer, E. Taglauer, H. Knosinger // Surface Scines. 1987. V.189/190. P. 842–850.
- 43.Leyrer, J. Solid state wetting and formation of monolayers in supported oxide systems / J. Leyrer, R. Margraf, E. Taglauer, H. Knösinger // Surface Scines. 1988. V.201. P. 603–609.
- 44.Leyrer, J. Spreading behavior of molybdenum trioxide on alumina and silica: a Raman microscopy study / J. Leyrer, D. Mey, H. Knösinger // Catalysis. 1990. V.124. P. 349–356.
- 45.Horsley, J. Structure of surface Tungsten Oxide Species in the WO3/Al2O3 supported oxide system / J. Horsley // J. Phys. Chem. 1987. V.91. P.4014–4026.
- 46.Chan, S.S. Relative Raman cross-sections of tungsten oxides: WO_3 , $Al_2(WO_4)_3$ and $WO_3|Al_2O_3$ / S.S. Chan, I.E. Wachs, L.L. Murrell // Catalysis. 1984. V. 90. P. 150–155.
- 47.Hilbrig, F. X-ray absorption spectroscopy study of the titania- and alumina-supported tungsten oxide system / F. Hilbrig, H.E. Gobel, H. Knösinger, H. Schmelz, B. Lengeler // J. Phys. Chem. 1991. V.95. № 25. P. 6973–6978.
- 48. Salvati, L. Surface spectroscopic study of tungsten-alumina catalysts using X-ray photoelectron, ion scattering and roman spectroscopies / L. Salvati,

- L.E. Makovsky, J.M. Stencel, F.R. Brown, D.M. Hercules // J. Phys. Chem. 1981. V.85. № 24. P. 3700–3707.
- 49. Герлих, П. Спектроскопические свойства активированных лазерных кристаллов / П. Герлих, Х. Каррас, Г. Кетитц, Р. Леман. Москва: "Наука", 1966. 207 с.
- 50. Ткаченко, Е.В. О возможной роли твердофазных взаимодействий в геологических процессах / Е.В. Ткаченко, В.М. Жуковский, М.С. Марков [и др.] // ДАН СССР. 1975. Т.224. №6. С.1414—1417.
- 51. Калякин, А.С. Разупорядочение и электроперенос в монокристаллах и керамике NaLa(MoO₄)₂ / А.С. Калякин, А.О. Крылов, А.Я. Нейман // Изв.АН СССР. Неорган.материалы. 1985. Т.21. №8. С.1403–1406.
- 52. Ткаченко, Е.В. Взаимосвязь термодинамических параметров среды, природы дефектообразования и электрофизических свойств молибдатов двухвалентных металлов / Е.В. Ткаченко, В.М. Жуковский, А.Я. Нейман, А.Н. Петров // ДАН СССР. 1977. Т.233 №6. С.1106—1109.
- 53. Жуковский, В.М. Химия твердого тела / Жуковский В.М., Жуковская А.С., Веселова Н.А. [и др.] // Свердловск: Издательство УПИ, 1978. Вып.2. с.3.
- 54.Конышева, Е.Ю. Электроповерхностный перенос WO3 в системе $CaWO_4/WO_3$: дисс. ... канд. хим. наук: 02.00.04 / Конышева Елена Юрьевна. 1999. 118 с.
- 55.Rigdon M.A. Electrical charge transport in single-crystal CaWO4 / M.A. Rigdon, R.E. Grace // J. of the American Ceramic Society. 1973. P.475.
- 56.Кругляшов А.Л. Дефектность структуры CaWO₄ / А.Л. Кругляшов, Е.В. Ткаченко // Изв. АН СССР. Неорган. материалы. 1983. Т. 19. № 7. С. 1176–1181.
- 57. Нейман А.Я. Механизм электро- и массопереноса в молибдатах и вольфраматах со структурой шеелита / А.Я. Нейман, А.С. Калякин,

- А.Ф. Гусева // Изв. АН СССР. Неорган.материалы. 1990. Т. 26. № 8. С. 1728–1733.
- 58. Конышева Е.Ю. Поверхностная фаза в системе CaWO₄–WO₃. Модель топологического строения композитов / Е.Ю. Конышева, А.Я. Нейман // Электрохимия. 2002. Т. 38. №4. С. 419–427.
- 59. Конышева, Е.Ю. Высокотемпературная поверхностная фаза на межфазной границе CaWO₄|WO₃: состав и свойства / Е.Ю. Конышева, А.Я. Нейман, Е.М. Горбунова // Изв. АН. Серия Физическая. 2002. Т. 66. №6. С. 830–833.
- 60.Konisheva E. Transport processes and surface transformation at the CaWO₄|WO₃ interface / E. Konisheva, A. Neiman, E. Gorbunova // Solis State Ionics. 2003. № 157. P. 45–49.
- 61.M. Chemla, French Patent No. 1216418, Demanded on Nov. 24, 1958.
- 62.Neiman, A. Ya. Cooperative transport in oxides: Diffusion and migration processes involving Mo(VI), W(VI), V(V) and Nb(V) / A.Ya. Neiman // Solis State Ionics. 1996. № 83. P. 263–273.
- 63. Нейман А.Я. Новые данные о механизме твердофазных реакций. II. Поверхностные и электроповерхностные эффекты / А.Я. Нейман, А.Ф. Гусева // Кинетика и катализ. 1999. №1. С.39–50.
- 64. Укше Е.А. Твердые электролиты / Е.А. Укше, Н.Г. Букун М.: Наука, 1977. 176 с.
- 65.Нейман А.Я. Электроповерхностные явления в твёрдофазных системах / А.Я. Нейман // Журнал физической химии. 2001. Т. 75. №12. С. 2119–2134.
- 66.Нейман, А.Я. Природа и механизм ионного переноса в вольфраматах $Me^{2+}\{WO_4\}$ (Ca, Sr, Ba) и $Me\{WO_4\}^{3+}$ (Al, Sc, In) по данным метода Тубандта / А.Я Нейман, Н.Н. Пестерева, Ю.Ү. Zhou, Д.О. Нечаев [и др.] // Электрохимия. 2013. Т. 49. № 7. С. 999–1012.
- 67.Kofstad, P. Nonstoichiometry, diffusion, and electrical conductivity in binary metal oxides. New York: Wiley-Interscience, 1972. 382 p.

- 68. Чеботин В.Н., Перфильев М.В. Электрохимия твёрдых электролитов. М.: Химия, 1978. 312 с.
- 69.Пестерева, Н.Н. Числа переноса носителей и ионная проводимость эвтектических метакомпозитов {MeWO₄·xWO₃} (Me-Sr,Ba) / Н.Н. Пестерева, А.Ю. Жукова, А.Я. Нейман // Электрохимия. 2007. Т.43. № 11. С. 1379–1386.
- 70. Воюцкий, С.С. Курс коллоидной химии. М.: Химия, 1970. 574 с.
- 71.Zhou, Y. Mechanism of defect formation and polyanion transport in solid scandium tungstate type oxides / Y. Zhou, R.P. Rao, S. Adams // Monatsh Chem. 2009. V.140. P. 1017–1023.
- 72. Zhou, Y. Intrinsic polyatomic defects in $Sc_2(WO_4)_3$ / Y. Zhou, R. P. Rao, S. Adams // Solid State Ionics. -2011. V. 192. No. 1. P. 34-37.
- 73.Пестерева, Н.Н. Обратимость электроповерхностного переноса через эвтектические интерфейсы MeWO₄|WO₃ (Me − Ca, Sr, Ba) / Н.Н. Пестерева, А. Я. Нейман // Электрохимия. 2012, Т.48. № 11. С. 1174–1183.
- 74. Нейман, А.Я. Взаимный электроповерхностный перенос и фазообразование на границе раздела MeWO₄|WO₃ (Me = Ca, Sr, Ba): данные электронной микроскопии / А.Я. Нейман, Е.V. Тsipis, В.Ю. Колосов, Н.Н. Пестерева [и др.] // Поверхность. Рентгеновские, синхротронные и нейтронные исследования. 2011. № 10, С. 68–76.
- 75.Пестерева, Н.Н. Влияние дисперсности MeWO₄ (Me=Ca, Sr, Ba) на интерфейсные процессы в ячейках (+/-)WO₃|MeWO₄|WO₃(-/+) и транспортные свойства *мета*композитных фаз / Н.Н. Пестерева, И.Г. Сафонова, С.С. Нохрин, А.Я. Нейман // Неорганическая химия. − 2010. Т.55. №6. С. 940−946.
- 76.Neiman, A. Y. Solid state surface and interface spreading: An experimental study / Neiman A. Y., Uvarov N. F., Pestereva N. N. // Solid State Ionics. 2007. V. 177. №. 39. P. 3361–3369.

- 77. Нейман, А.Я. Поверхностная диффузия, миграция и сопряженные процессы на гетерофазных границах MeWO₄|WO₃, (Me-= Ca, Sr, Ba) / А.Я. Нейман, Н.Н. Пестерева, Е.В. Ципис // Электрохимия. 2007. Т. 43. №6. С. 704–713.
- 78.Пестерева, Н.Н. Взаимные самопроизвольные и электроповерхностные процессы на гетерофазных границах WO₃|Me₂(WO₄)₃, (Me=In, Eu, Sc) / Н.Н. Пестерева, А.В. Поташникова, К.Ю. Шуняев, А.Я. Нейман // Электрохимия. 2007. Т. 43. №6. С. 749–755.
- 79. Алесковский, В.Б. Курс химии надмолекулярных соединений: учеб. пособие / В.Б. Алесковский. Л.: Изд-во Ленингр. ун-та, 1990. 282 с.
- 80.Ivanov, M.G. Metastable states of laser synthesized oxide nanoparticles / Yu.A. Kotov, A.I. Medvedev, A.M. Murzakayev, V.V. Osipov, A.K. Shtolz, V.I. Solomonov // Journal of Alloys and Compounds. 2009. V. 483, P. 503–506.
- 81. Страумал, Б.Б. Фазовые переходы на границах зерен. Жидкофазное и твердофазное смачивание, предсмачивание, предплавление. Учебное пособие. М.: МИСиС, 2004. 80 с.
- 82.Коллонг, Р. Нестехиометрия. М.: Мир, 1974. 288 с.