На правах рукописи

official

Подгорнова Ольга Андреевна

# СИНТЕЗ, СТРУКТУРА И ЭЛЕКТРОХИМИЧЕСКИЕ СВОЙСТВА КАТОДНЫХ МАТЕРИАЛОВ НА ОСНОВЕ LiCoPO<sub>4</sub>

02.00.21 - химия твердого тела

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени кандидата химических наук

Новосибирск – 2016

Работа выполнена в Федеральном государственном бюджетном учреждении науки Институте химии твёрдого тела и механохимии Сибирского отделения Российской академии наук

| Научный руководитель:  | кандидат химических наук                                                                                                                                                                         |  |  |  |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                        | Косова Нина Васильевна                                                                                                                                                                           |  |  |  |
| Официальные оппоненты: | Келлерман Дина Георгиевна,<br>доктор химических наук, профессор, ведущий<br>научный сотрудник Института химии твёрдого<br>тела Уральского отделения Российской академии<br>наук, г. Екатеринбург |  |  |  |
|                        | Кардаш Татьяна Юрьевна,<br>кандидат химических наук, научный сотрудник<br>Института катализа им. Г.К. Борескова Сибирского<br>отделения Российской академии наук, г.<br>Новосибирск              |  |  |  |
| Ведущая организация    | Федеральное государственное бюджетное<br>учреждение науки Институт неорганической химии<br>им. А.В. Николаева Сибирского отделения<br>Российской академии наук, г. Новосибирск                   |  |  |  |

Защита состоится 12 октября 2016 г. в 10<sup>00</sup> на заседании диссертационного совета Д 003.044.01 при Институте химии твёрдого тела и механохимии Сибирского отделения РАН по адресу: 630128, г. Новосибирск, ул. Кутателадзе, 18.

С диссертацией можно ознакомиться в библиотеке и на сайте Института химии твёрдого тела и механохимии СО РАН: <u>http://www.solid.nsc.ru</u>.

Автореферат разослан «\_\_» \_\_\_\_ 2016 г.

Учёный секретарь диссертационного совета, д.х.н.

Marty

Шахтшнейдер Татьяна Петровна

## ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы. В настоящее время литий-ионная технология – наиболее актуальная и передовая аккумуляторная технология в современном мире. На её развитие тратится больше средств, чем на все остальные виды аккумуляторов вместе взятые. Литийионные аккумуляторы (ЛИА) являются самыми мощными, энергоёмкими и долгоживущими вторичными источниками тока. Удельные характеристики ЛИА в несколько раз превосходят аналогичные показатели для используемых до последнего времени свинцовых, никелькадмиевых, никель-металл-гидридных аккумуляторов. Они обладают высокими удельными электрохимическими характеристиками и являются безопасными для окружающей среды по сравнению с традиционными химическими источниками тока. Высокие значения плотностей энергии ЛИА обусловливают их широкое применение в качестве автономных источников электроэнергии для питания всевозможной электронной аппаратуры. Они незаменимы на транспорте, в промышленности, в космических аппаратах, в военной технике и во многих других областях жизни современного общества.

Электрохимические характеристики ЛИА сильно зависят от структуры и свойств активных электродных материалов и электролитов. В настоящее время проводятся интенсивные исследования по разработке новых по составу и структуре катодных материалов и новых методов их синтеза, что позволяет улучшить емкостные и мощностные характеристики аккумуляторов. Особое внимание исследователей привлекают катодные материалы на основе ортофосфатов лития и *d*-металлов со структурой оливина LiMPO<sub>4</sub> (M = Fe, Mn, Co, Ni) из-за высокого потенциала окислительно-восстановительной пары  $Li/Li^+$ , который на 1.5-2.0 В выше потенциала соответствующих оксидов вследствие 'индуктивного эффекта' М-О-Р, обусловленного высокой ковалентностью связи P-O в полианионе  $PO_4^{3-}$ . Этот эффект обеспечивает стабилизацию структуры оливина и препятствует выделению кислорода из заряженного катодного материала в ходе циклирования. В связи с этим ортофосфаты лития и *d*-металлов более безопасны в применении по сравнению с аналогичными оксидами.

Высоковольтовые катодные материалы на основе ортофосфатов лития и кобальта LiCoPO<sub>4</sub> характеризуются высоким значением удельной емкости и энергии по сравнению с другими катодными материалами. Однако широкое их применение ограничено низкой электропроводностью и разложением электролита при высоких напряжениях (выше 4.8 В).

Целью данной работы является исследование условий синтеза наноструктурированных высоковольтовых катодных материалов на основе LiCoPO<sub>4</sub>/C с применением механической активации, изучение влияния кристаллической структуры и морфологии на их электрохимические свойства.

Исходя из поставленной цели, были сформулированы следующие задачи:

1. Разработка механически стимулированного твердофазного синтеза наноструктурированного LiCoPO<sub>4</sub>/C: исследование влияния условий синтеза и природы прекурсоров;

2. Изучение структуры, морфологии и электрохимических свойств синтезированного LiCoPO<sub>4</sub>/C комплексом современных структурно-морфологических и электрохимических методов;

3. Исследование влияния изовалентного допирования ионами Fe<sup>2+</sup> на структуру, морфологию и электрохимические свойства LiCoPO<sub>4</sub>;

4. Исследование влияния модифицирования ионами ванадия на структуру, морфологию и электрохимические свойства LiCoPO<sub>4</sub>;

5. Изучение механизма интеркаляции/деинтеркаляции ионов лития в структуру допированного и модифицированного LiCoPO<sub>4</sub>.

Научная новизна работы. Была разработана методика твердофазного синтеза катодных материалов на основе LiCoPO<sub>4</sub> с использованием планетарной шаровой мельницы АГО-2. Определены оптимальные параметры синтеза (реагенты, время и условия механической активации (MA), а также температура и продолжительность последующего отжига) для получения хорошо окристаллизованного продукта, не содержащего примесей.

Проведено исследование влияния изовалентного допирования ионами Fe<sup>2+</sup> на структуру, морфологию и электрохимические свойства LiCoPO<sub>4</sub>. Методом рентгенофазового анализа (PФA) подтверждено образование непрерывного ряда твердых растворов во всем диапазоне концентраций LiCo<sub>1-y</sub>Fe<sub>y</sub>PO<sub>4</sub> ( $0 \le y \le 1$ ). Методом Мессбауэровской спектроскопии показано, что все ионы железа в структуре твердых растворов находятся в состоянии окисления 2+ в октаэдрическом окружении. Впервые с помощью *in situ* дифракции синхротронного излучения установлено изменение механизма интеркаляции/деинтеркаляции ионов лития в LiCo<sub>0.5</sub>Fe<sub>0.5</sub>PO<sub>4</sub> от двухфазного, характерного для чистых LiCoPO<sub>4</sub> и LiFePO<sub>4</sub>, на однофазный.

Проведено исследование влияния модифицирования LiCoPO<sub>4</sub> ионами ванадия на его структуру, морфологию и электрохимические свойства. Методами РФА и нейтронографии обнаружено образование композитов состава (1-y)LiCoPO<sub>4</sub>/yLi<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub> во всем диапазоне концентраций ( $0 \le y \le 1$ ) с одновременным частичным замещением ионов кобальта ионами ванадия в фазе LiCoPO<sub>4</sub> (~ 4 %) и образованием вакансий лития. Методом NEXAFS спектроскопии показано, что ионы V в композитах (1-y)LiCoPO<sub>4</sub>/yLi<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub>, находятся в смешанной степени окисления 3+/4+.

#### На защиту выносятся:

1. Методика синтеза катодных материалов на основе LiCoPO<sub>4</sub>/C с помощью механически стимулированного твердофазного синтеза.

2. Результаты исследования структуры, морфологии и электрохимических свойств LiCoPO<sub>4</sub>/C, полученного твердофазным синтезом с применением механической активации.

3. Влияние изовалентного допирования LiCoPO<sub>4</sub> ионами железа на структуру, морфологию и электрохимические свойства образующихся твердых растворов.

4. Влияние модифицирования LiCoPO<sub>4</sub> ионами ванадия на структуру, морфологию и электрохимические свойства образующихся композиционных материалов (1y)LiCoPO<sub>4</sub>/yLi<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub>.

Личный вклад автора. Все результаты, приведенные в диссертации, получены самим автором или при его непосредственном участии. Автором выполнены синтез катодных материалов, их исследование с помощью методов сканирующей электронной микроскопии, циклической хронопотенциометрии и гальваностатического прерывистого титрования. Автор занимался обработкой дифрактограмм и нейтронограмм, спектров инфракрасной (ИК) спектроскопии, данных электронной микроскопии и циклической хронопотенциометрии. Автор принимал участие в проведении *in situ* исследований дифракции синхротронного излучения на базе синхротронного исследовательского центра DESY (г. Гамбург, Германия). Обсуждение и анализ полученных результатов проводились совместно с научным руководителем к.х.н. Н.В. Косовой. Автор принимал активное участие в обсуждении и написании статей.

**Апробация работы**. Результаты, изложенные в диссертационной работе, докладывались и обсуждались на различных российских и международных конференциях, а также на научных конференциях ИХТТМ СО РАН:

1. 51<sup>я</sup> Международная научная студенческая конференция "Студент и научнотехнический прогресс" (Новосибирск, 2013);

2. IV International Conference "Fundamental Bases of Mechanochemical Technologies" (Novosibirsk, 2013);

3. 9<sup>я</sup> Российская конференция "Физико-химические проблемы возобновляемой энергетики" (Санкт-Петербург, 2013);

4. 52<sup>я</sup> Международная научная студенческая конференция "Студент и научнотехнический прогресс" (Новосибирск, 2014);

5. XII International conference on nanostructured materials (NANO 2014) (Moscow, 2014);

6. 34<sup>е</sup> Фрумкинские чтения по электрохимии (МГУ, г. Москва, 2015)

7. International Conference "International Battery Association (IBA 2016)" (Nantes, France, 2016).

По результатам работы опубликованы статьи в рецензируемых журналах: «Химия в интересах устойчивого развития», «Журнал структурной химии», «Journal of Materials Chemistry A» (импакт-фактор 7.443), «Journal of Materials and Engineering B» (импакт-фактор 2.169). Результаты работы, опубликованные в статье "Effect of Fe<sup>2+</sup> substitution on the structure and electrochemistry of LiCoPO<sub>4</sub> prepared by mechanochemically assisted carbothermal reduction" (Journal of Materials Chemistry A) и представленные на  $34^x$  Фрумкинских чтениях по электрохимии (МГУ, г. Москва, 2015), были удостоены диплома и премии им. А.Н. Фрумкина.

Диссертационная работа выполнена в группе материалов для литий-ионных аккумуляторов в рамках плана НИР ФГБУН Института химии твердого тела и механохимии СО РАН и проекта Российского фонда фундаментальных исследований (грант № 14-03-01082).

Публикации. По материалам диссертации опубликовано 10 работ, в том числе, 4 статьи в рецензируемых изданиях и 6 тезисов докладов российских и международных конференций.

**Объем и структура работы**. Диссертационная работа состоит из введения, пяти глав, заключения, списка цитируемой литературы. Материал изложен на 120 страницах и содержит 64 рисунка, 15 таблиц и список литературы из 134 наименований.

# ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

**Во введении** обоснована актуальность темы, определены цели и задачи работы, указана научная новизна полученных результатов, сформулированы основные положения, выносимые на защиту.

Первая глава представляет собой литературный обзор, в котором рассматриваются принцип работы, основные характеристики ЛИА, структура и свойства LiCoPO<sub>4</sub>, методы его синтеза. Принцип действия литий-ионного аккумулятора рассмотрен на примере типичной ячейки, в которой в качестве катода используется LiFePO<sub>4</sub>, а в качестве анода – графит. Описаны процессы, протекающие в ходе заряда и разряда аккумулятора, и основные рабочие характеристики ЛИА, такие как напряжение разомкнутой цепи, рабочее напряжение, циклируемость, емкость ячейки, ее мощность. Рассмотрены ортофосфаты лития и *d*-металлов со структурой оливина LiMPO<sub>4</sub> (M = Fe, Mn, Co, Ni) в качестве катодных материалов для ЛИА и проведено их сравнение с уже используемыми материалами. Обоснован выбор LiCoPO<sub>4</sub> в качестве объекта исследований. На основании литературных данных подробно описана кристаллическая структура LiCoPO<sub>4</sub>, проведено сравнение различных полиморфных LiCoPO<sub>4</sub>, модификаций рассмотрено влияние условий синтеза на параметры кристаллической решетки. Рассмотрены методы синтеза LiCoPO<sub>4</sub>, представленные в литературе, и обоснован выбор механохимически стимулированного твердофазного синтеза. Большое внимание уделено рассмотрению электрохимических свойств LiCoPO<sub>4</sub> как высоковольтового катодного материала и методам улучшения его электрохимических характеристик.

**Во второй главе** охарактеризованы реагенты, которые были использованы в данной работе, приведена методика синтеза наноструктурированных высоковольтовых катодных материалов на основе LiCoPO<sub>4</sub>. Указаны условия МА в планетарной шаровой мельнице АГО-2 с водяным охлаждением: использовали шары разных диаметров: 3, 5, 8 мм; время активации варьировали в диапазоне 5-10 мин; частота общего вращения барабанов составляла 600 и 900 об/мин. Последующий отжиг МА смеси проводили сначала при 300°C в течение 1 ч в токе аргона, затем в диапазоне температур 450-750°C в течение 1-3 ч в токе аргона.

Описан комплекс современных структурно-морфологических и электрохимических методов исследования свойств синтезированных катодных материалов, включая РФА,

нейтронографию, термический анализ (ТГ и ДТА), инфракрасную (ИК), мессбауэровскую (ЯГР) и NEXAFS спектроскопии, сканирующую (СЭМ) и просвечивающую электронную микроскопии, спектроскопию ядерного магнитного резонанса (ЯМР), циклическую хронопотенциометрию и метод прерывистого гальваностатического титрования (GITT).

<u>В третьей главе</u> представлены результаты исследований, направленных на поиск оптимальных условий твердофазного синтеза наноструктурированного LiCoPO<sub>4</sub>/C и изучение его структурных, морфологических и электрохимических свойств.

Синтез LiCoPO<sub>4</sub> проводили с помощью механически стимулированного твердофазного синтеза с использованием различных соединений кобальта (CoO,  $CoC_2O_4 \cdot 2H_2O$ ,  $Co_3O_4$ ,  $Co(OH)_2$ ) в смеси с карбонатом лития (Li<sub>2</sub>CO<sub>3</sub>), гидрофосфатом аммония (NH<sub>4</sub>)<sub>2</sub>HPO<sub>4</sub> и сажей П-277. Введение сажи в исходную смесь с Co<sub>3</sub>O<sub>4</sub> позволяло одновременно осуществлять процессы восстановления Co<sup>3+</sup> до Co<sup>2+</sup> и поверхностного модифицирования конечного продукта углеродом.

На рис. 1 приведены дифрактограммы исходных реакционных смесей после МА в

зависимости ОТ используемого источника кобальта. Из дифрактограмм следует, что после МА исходные реагенты становятся полностью или частично аморфизованными. Кроме того, отмечено образование промежуточных продуктов, таких как Li<sub>3</sub>PO<sub>4</sub> (для MA смесей с оксидами кобальта СоО и Со<sub>3</sub>О<sub>4</sub>) и (NH<sub>4</sub>)СоРО<sub>4</sub> (для МА смесей с  $CoC_2O_4 \cdot 2H_2O$ И  $Co(OH)_2$ ). Образования конечного продукта при данных условиях МА не происходит.



**Рис. 1.** Дифрактограммы исходных реакционных смесей после МА в зависимости от используемого источника кобальта.

На рис. 2 представлены результаты ТГ и ДТА, полученные для МА и растертой в ступке смеси, состоящей из Li<sub>2</sub>CO<sub>3</sub>, CoC<sub>2</sub>O<sub>4</sub>·2H<sub>2</sub>O и (NH<sub>4</sub>)<sub>2</sub>HPO<sub>4</sub>. Нагрев производили в атмосфере гелия со скоростью 10°C/мин. На кривых ДТА наблюдается несколько эндотермических пиков в области 100-400°C, связанных с дегидратацией и разложением





сосуществующих модификаций LiCoPO<sub>4</sub>: низкотемпературной с ПГС *Pn2*<sub>1</sub>*a* и высокотемпературной с ПГС *Pnma*. При 750°С на дифрактограммах присутствуют лишь рефлексы, относящиеся к LiCoPO<sub>4</sub> с ПГС *Pnma*.

Дифрактограммы образцов LiCoPO<sub>4</sub>, синтезированных из различных прекурсоров кобальта при температуре 750°C. соответствуют PDF карточке LiCoPO<sub>4</sub> (№ 78-5576) и индексируются в ромбической сингонии с ПГС Рпта. Все образцы являются однофазными; на ИХ дифрактограммах отсутствуют рефлексы примесных фаз. Механически стимулированный твердофазный синтез получению LiCoPO<sub>4</sub> приводит к В наноразмерном состоянии (размер частиц ~

исходных соединений. Для МА смеси наблюдается сдвиг положения этих пиков в сторону более низких температур.

По данным рентгенофазового анализа (рис. 3) при нагревании МА 360°C смеси до происходит образование низкотемпературной метастабильной полиморфной модификации LiCoPO<sub>4</sub> с ПГС *Pn*2<sub>1</sub>*a*. При 440°C дифрактограмме на присутствуют рефлексы двух



**Рис. 3.** Дифрактограммы МА смеси Li<sub>2</sub>CO<sub>3</sub>, CoC<sub>2</sub>O<sub>4</sub>·2H<sub>2</sub>O и (NH<sub>4</sub>)<sub>2</sub>HPO<sub>4</sub> и продуктов ее нагревания до различных температур.

100-200 нм). Однако для дальнейших исследований был выбран LiCoPO<sub>4</sub>, синтезированный из Co<sub>3</sub>O<sub>4</sub>, поскольку метод карботермического восстановления позволяет одновременно осуществлять восстановление Co<sup>3+</sup> в Co<sub>3</sub>O<sub>4</sub> до Co<sup>2+</sup> и поверхностное модифицирование LiCoPO<sub>4</sub> проводящим углеродом. Роль углерода состоит не только в увеличении электронной проводимости конечного продукта, но и в эффективном торможении роста его частиц в ходе синтеза.

Исследование локальной структуры LiCoPO<sub>4</sub> было проведено с помощью ИК и ЯМР

спектроскопии. На рис. 4 приведен ИК спектр образца LiCoPO<sub>4</sub>, синтезированного из  $Co_3O_4$  при температуре 750°С. На спектре присутствует две группы полос. преимущественно относящихся к колебаниям РО<sub>4</sub> (точечная группа  $T_d$ ): валентные  $v_1$  (синглет) и  $v_3$ (трижды вырожденные) колебания в области 900 -1150 см<sup>-1</sup> и деформационные  $v_2$  (дублет) и  $v_4$ (трижды вырожденные) колебания в области 400 - 650 см<sup>-1</sup>.



**Рис. 4.** ИК спектр LiCoPO<sub>4</sub>, синтезированного из Co<sub>3</sub>O<sub>4</sub> при температуре 750°С.

Положение линий Li ЯМР в спектрах ортофосфатов лития LiMPO<sub>4</sub> (M = Fe, Mn, Co, Ni) определяется контактным взаимодействием атомов лития с неспаренными электронами переходных металлов, находящимися на связывающих и разрыхляющих молекулярных орбиталях, перенос которых происходит вдоль цепочек Li-O-M. Знак и величина контактного сдвига зависят от угла связи, ковалентности связи и числа неспаренных электронов в переходном металле. На спектрах <sup>6</sup>Li и <sup>31</sup>Р MAS ЯМР LiCoPO<sub>4</sub>, а также других



**Рис. 5.** ЯМР спектры LiMPO<sub>4</sub> (M = Fe, Mn, Co, Ni). (a) - спектр <sup>6</sup>Li MAS ЯМР. Приведен сдвиг сигнала; неотмеченные пики являются сателлитами вращения. (б) - спектр <sup>31</sup>Р ЯМР. Приведено значение центра тяжести спектра.

ортофосфатов лития и d металлов, наблюдаются Из единичные линии. рис. 5 следует, что величины контактных <sup>31</sup>P ЯМР сдвигов в LiCoPO<sub>4</sub> спектрах существенно больше, чем сдвигов ЯМР <sup>6</sup>Li Это указывает на то, что ковалентность связи Р-О-М значительно выше, чем связи Li-O-M.

Зарядно-разрядные кривые циклирования и положение окислительновосстановительных пиков идентичны для всех синтезированных образцов LiCoPO<sub>4</sub> и не зависят от природы прекурсора кобальта. Наблюдаемые на зарядной кривой два плато указывают на то, что интеркаляция/деинтеркаляция ионов лития из структуры LiCoPO<sub>4</sub> происходит по двум двухфазным механизмам, характеризующимся образованием промежуточной фазы Li<sub>0.7</sub>CoPO<sub>4</sub>.

$$LiCoPO_4 \rightarrow Li_{0.7}CoPO_4 + 0.3 Li^+ + 0.3 e^-$$
 (1)

$$Li_{0.7}CoPO_4 \rightarrow CoPO_4 + 0.7 Li^+ + 0.7 e^-$$
 (2)

Согласно литературным данным, поскольку при деинтеркаляции лития из структуры LiCoPO<sub>4</sub> происходит сильное изменение объема элементарной ячейки (~7%), то промежуточная фаза выполняет роль буфера объема, тем самым обеспечивая стабильность структуры оливина в ходе циклирования. Кроме того, образование промежуточной фазы энергетически выгодно, поскольку энергетический барьер, связанный со структурными превращениями, понижается.

<u>В четвертой главе</u> представлены результаты исследования влияния изовалентного допирования ионами Fe<sup>2+</sup> на структуру, морфологию и электрохимические свойства LiCoPO<sub>4</sub>. Проведено изучение механизма интеркаляции/деинтеркаляции ионов лития в структуру LiCo<sub>0.5</sub>Fe<sub>0.5</sub>PO<sub>4</sub>.

Методом РФА с уточнением по Ритвельду показано, что с помощью механически стимулированного совместного карботермического восстановления  $Co_3O_4$  и  $Fe_2O_3$  в смеси с  $Li_2CO_3$  и (NH<sub>4</sub>)<sub>2</sub>HPO<sub>4</sub> были синтезированы однофазные твердые растворы LiCo<sub>1-y</sub>Fe<sub>y</sub>PO<sub>4</sub> ( $0 \le y \le 1$ ) со структурой оливина во всем интервале концентраций. Дифрактограммы индексируются в ромбической сингонии с пространственной группой *Pnma*. На них отсутствуют рефлексы примесных фаз, которые образуются в результате разложения LiCoPO<sub>4</sub> при его нагреве выше 700°C в течение длительного периода времени.

Полученные из уточнения по методу Ритвельда параметры элементарной ячейки твердых растворов LiCo<sub>1-y</sub>Fe<sub>y</sub>PO<sub>4</sub> ( $0 \le y \le 1$ ) представлены на рис. 6. Видно, что все параметры линейно изменяются в зависимости от содержания железа в образцах: параметры *a* и *b* увеличиваются с увеличением содержания Fe вследствие большего ионного радиуса Fe<sup>2+</sup> (0,78 Å) по сравнению с радиусом Co<sup>2+</sup> (0,75 Å), а параметр *c* уменьшается. Увеличение значения *a*·*c* свидетельствует об увеличении поперечного сечения 1*D* каналов вдоль направления *b* в структуре оливина, что коррелирует с литературными данными.



Рис. 6. Зависимость параметров элементарной ячейки твердых растворов LiCo<sub>1-y</sub>Fe<sub>y</sub>PO<sub>4</sub> (0≤y≤1) от состава.

Локальная структура синтезированных твердых растворов LiCo<sub>1-v</sub>Fe<sub>v</sub>PO<sub>4</sub>  $(0 \leq y \leq 1)$ ИК ЯГРисследована методами И LiCo<sub>1-</sub> спектроскопии. На ИК спектрах 7) присутствуют  $_{v}Fe_{v}PO_{4}$ (рис. внутримолекулярные колебания группы РО4 (группа симметрии  $T_d$ ): симметричные ( $v_1$ ) и ассиметричные (v<sub>3</sub>) валентные колебания (900-1150 см<sup>-1</sup>), симметричные  $(v_2)$ И ассиметричные деформационные  $(v_4)$ колебания (500-650  $\text{см}^{-1}$ ). Стоит отметить, что с увеличением содержания Fe в LiCo<sub>1-v</sub>Fe<sub>v</sub>PO<sub>4</sub> полосы сдвигаются в сторону меньших

По СЭМ наблюдается данным не морфологии значительного отличия для синтезированных твердых растворов LiCo<sub>1-v</sub>Fe<sub>v</sub>PO<sub>4</sub> (0≤у≤1): первичные частицы, имеющие средний размер около 100-200 нм и близкую к сферической рыхлые форму, объединены В вторичные агломераты размером 10-15 мкм. Методом ЭДС спектроскопии подтвержден химический состав образцов, а согласно картам распределения элементов. ионы Fe Co равномерно И распределены по всему объему частиц твердых растворов LiCo<sub>1-v</sub>Fe<sub>v</sub>PO<sub>4</sub>.



**Рис. 7.** ИК-спектры синтезированных твердых растворов  $LiCo_{1-y}Fe_yPO_4$  ( $0 \le y \le 1$ ).

частот. Хорошо известно, что колебания фосфатов включают не только колебания Р и О; поэтому наблюдаемый сдвиг может быть объяснен увеличением ковалентности М-О в твердых растворах при переходе от Со к более электроположительному Fe.

Наблюдаемый на ЯГР спектрах дублет соответствует ионам  $Fe^{2+}$  в высокоспиновом состоянии в октаэдрическом окружении в структуре оливина. В таблице 1 представлены значения химического сдвига (*IS*), квадрупольного расщепления (*QS*) и ширины линий синтезированных твердых растворов. Они незначительно изменяются для всех составов и соответствуют чистому LiCoPO<sub>4</sub>. Других примесных железосодержащих фаз не наблюдается, что согласуется с данными, полученными из рентгенофазового анализа.

**Таблица 1.** Ширина, квадрупольное расщепление (*QS*), химический сдвиг (*IS*) и содержание Fe<sup>2+</sup> для синтезированных твердых растворов LiCo<sub>1-y</sub>Fe<sub>y</sub>PO<sub>4</sub>, полученные из данных спектроскопии ЯГР.

| у в LiCo <sub>1-y</sub> Fe <sub>y</sub> PO <sub>4</sub> | Ширина, мм/с | <i>QS</i> , мм/с | <i>IS</i> , мм/с | содержание Fe <sup>2+</sup> , % |
|---------------------------------------------------------|--------------|------------------|------------------|---------------------------------|
| 0.05                                                    | 0,26         | 2,95             | 1,22             | 100                             |
| 0.10                                                    | 0,25         | 2,96             | 1,22             | 100                             |
| 0.25                                                    | 0,27         | 2,97             | 1,23             | 100                             |
| 0.50                                                    | 0,33         | 2,91             | 1,22             | 100                             |
| 0.75                                                    | 0,31         | 2,94             | 1,22             | 100                             |
| 0.90                                                    | 0,31         | 2,94             | 1,23             | 100                             |
| 1.00                                                    | 0,36         | 2,95             | 1,22             | 100                             |

При циклировании LiCo<sub>1-v</sub>Fe<sub>v</sub>PO<sub>4</sub> участвуют две окислительно-восстановительные пары: Fe<sup>2+</sup>/Fe<sup>3+</sup> (в области 3,4 В) и Co<sup>2+</sup>/Co<sup>3+</sup> (в области 4,7 В). На рис. 8 показано изменение среднего значения потенциала катодных и анодных пиков лля окислительновосстановительных пар  $Fe^{2+}/Fe^{3+}$  и  $Co^{2+}/Co^{3+}$  в зависимости от состава LiCo<sub>1-v</sub>Fe<sub>v</sub>PO<sub>4</sub>. Видно, окислительночто среднее значение восстановительного потенциала пары Со<sup>2+</sup>/Со<sup>3+</sup> уменьшается с увеличением содержания железа



**Рис. 8.** Среднее значение потенциала катодных и анодных пиков для окислительно-восстановительных пар  $Fe^{2+}/Fe^{3+}$  и  $Co^{2+}/Co^{3+}$ .

в образцах от 4,79 для LiCoPO<sub>4</sub> до 4,76 В для состава y=0.5 и до 4.66 В для состава y=0.9 (сдвиг достигает значения ~0,13 В). Среднее значение потенциала пары Fe<sup>2+</sup>/Fe<sup>3+</sup>, напротив, увеличивается с увеличением содержания Со и составляет 3,43 В для образца y=0.9 и 3.48 В

для образца y=0.25. Замещение ионов Co<sup>2+</sup> более электроположительными ионами Fe<sup>2+</sup> увеличивает ковалентность связи М-О и, тем самым, уменьшает окислительновосстановительный потенциал пары Co<sup>2+</sup>/Co<sup>3+</sup> и повышает потенциал пары Fe<sup>2+</sup>/Fe<sup>3+</sup>. Сдвиг потенциала пары Co<sup>2+</sup>/Co<sup>3+</sup> в сторону меньших напряжений позволит проводить электрохимические исследования, оставаясь в электрохимическом окне стабильности стандартного электролита.

Зависимость разрядной емкости от номера цикла для LiCo<sub>1-v</sub>Fe<sub>v</sub>PO<sub>4</sub> в диапазоне напряжений 3.0-5.0 В указывает на значительное повышение обратимости емкости при увеличении содержания Fe в образцах (рис. 9). Повышение емкости твердых растворов LiCo<sub>1-v</sub>Fe<sub>v</sub>PO<sub>4</sub> в сравнении с чистым LiCoPO<sub>4</sub> может быть объяснено 1Dувеличением сечения каналов, что подтверждается данными рентгенофазового анализа и увеличением ковалентности связи М-О, что следует из ИК спектров.



Рис. 9. Зависимость разрядной емкости от номера цикла для твердых растворов  $LiCo_{1-y}Fe_yPO_4$  ( $0 \le y \le 1$ ) в диапазоне напряжений 3.0-5.0 В.

что

Основываясь экспериментальных на данных, была вычислена плотность энергии твердых растворов LiCo<sub>1-v</sub>Fe<sub>v</sub>PO<sub>4</sub> в зависимости от содержания Fe. Сравнение теоретической и практической плотности энергии образцов показано на рис. 10. Видно,



практической плотности энергии твердых растворов LiCo<sub>1-v</sub>Fe<sub>v</sub>PO<sub>4</sub> ( $0 \le y \le 1$ ).

Вт.ч.г<sup>-1</sup>, т.е. 46% от теоретического значения, тогда как плотность энергии LiCo<sub>0.5</sub>Fe<sub>0.5</sub>PO<sub>4</sub> увеличивается до 484 Вт·ч·г<sup>-1</sup>, т.е. 70% от теоретического значения.

Исследование механизма интеркаляции/деинтеркаляции ионов лития в LiCo<sub>1-v</sub>Fe<sub>v</sub>PO<sub>4</sub> было проведено с помощью in situ дифракции СИ. На рис. 11 представлены избранные дифрактограммы LiCo<sub>0.5</sub>Fe<sub>0.5</sub>PO<sub>4</sub> во время первого заряда. Видно, что во всем напряжений наблюдается диапазоне

экспериментальная плотность энергии недопированного LiCoPO<sub>4</sub> составляет всего 376

присутствие только одного набора рефлексов, двухфазного указывающее на смену механизма интеркаляции, характерного для недопированного LiCoPO<sub>4</sub>, на однофазный механизм твердых растворов. Сдвиг сторону рефлексов больших В углов происходит вследствие поэтапного окисления ионов  $Fe^{2+}$  до  $Fe^{3+}$  и  $Co^{2+}$  до  $Co^{3+}$  без образования промежуточной фазы. Промежуточная которой область, R происходит переход от одной окислительновосстановительной пары другой, к характеризуется более заметным сдвигом рефлексов. Переход двухфазного ОТ механизма деинтеркаляции ионов лития в LiCoPO<sub>4</sub> на однофазный механизм в твердом растворе LiCo<sub>0.5</sub>Fe<sub>0.5</sub>PO<sub>4</sub> в выбранном



дифракции СИ.

диапазоне напряжений установлен нами впервые. Это, несомненно, связано с изменением электронной структуры данного материала и взаимным влиянием ионов Fe и Co на интервал



**Рис. 12.** Изменение параметров ячейки LiCo<sub>0.5</sub>Fe<sub>0.5</sub>PO<sub>4</sub> в ходе деинтркаляции в сравнении с литературными данными для LiCoPO<sub>4</sub>.

смешиваемости начальной и конечной фаз.

Ha 12 приведены зависимости рис. рассчитанных параметров решетки В ходе деинтеркаляции образцов в сравнении с данными LiCoPO<sub>4</sub>, Li<sub>0.7</sub>CoPO<sub>4</sub> CoPO<sub>4</sub>, для И представленными в литературе. Видно, что для LiCo<sub>0.5</sub>Fe<sub>0.5</sub>PO<sub>4</sub> изменение параметров решетки при деинтеркаляции носит более плавный характер, чем для недопированного LiCoPO<sub>4</sub>. Изменение объема ячейки (ДV) составляет 7.0% для LiCoPO<sub>4</sub> и 3.7% для LiCo<sub>0.5</sub>Fe<sub>0.5</sub>PO<sub>4</sub>. Эти данные согласуются с кристаллической расчетами И электронной LiCoPO<sub>4</sub>, структуры допированного которые указывают, что допирование в позиции кобальта может приводить к уменьшению изменения объема структуры LiCoPO<sub>4</sub> в процессе интеркаляции/деинтеркаляции ионов лития и подавлению образования антиструктурных Li-Co дефектов. Допирование LiCoPO<sub>4</sub> позволяет стабилизировать неустойчивую фазу CoPO<sub>4</sub>, что обеспечивает хорошую обратимость и циклируемость материала.

С помощью метода GITT был проведен расчет коэффициента химической диффузии ионов Li<sup>+</sup> в ходе циклирования LiFe<sub>0.5</sub>Co<sub>0.5</sub>PO<sub>4</sub>. Расчетные значения  $D_{\text{Li+}}$  в процессе зарядаразряда LiFe<sub>0.5</sub>Co<sub>0.5</sub>PO<sub>4</sub> изменяются в пределах от 10<sup>-13</sup> до 10<sup>-16</sup> см<sup>2</sup>·с<sup>-1</sup>. Чистый LiCoPO<sub>4</sub> имеет коэффициент диффузии  $D_{\text{Li+}} \sim 10^{-15}$ - $10^{-18}$  см<sup>2</sup>·с<sup>-1</sup>.

<u>В пятой главе</u> приведены результаты исследования влияния модифицирования LiCoPO<sub>4</sub> ванадием на его структуру, морфологию и электрохимические свойства.

Ha рис. 13 приведены дифрактограммы продуктов, полученных с помощью механически стимулированного карботермического восстановления Со<sub>3</sub>О<sub>4</sub> и V<sub>2</sub>O<sub>5</sub>, в сравнении с чистыми LiCoPO<sub>4</sub> и Li<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub>. Видно, что все образцы, независимо от их состава, являются двухфазными и состоят из LiCoPO<sub>4</sub> и  $Li_{3}V_{2}(PO_{4})_{3}$ . По данным нейтронографических исследований установлено, что, кроме этого,



**Рис. 13.** Дифрактограммы композиционных материалов (1-y)LiCoPO<sub>4</sub>/yLi<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub> ( $0 \le y \le 1$ ).

происходит частичное замещение ионов кобальта ионами ванадия в фазе LiCoPO<sub>4</sub> (~ 4 %) и образование вакансий лития.

Известно, что для оливинов характерно образование антиструктурных дефектов  $Li_{M'}$  +  $M_{Li}^{\bullet}$ . При модифицировании LiCoPO<sub>4</sub> ионами ванадия в степени окисления выше 2+ наиболее энергетически выгодным механизмом компенсации заряда является образование вакансий кобальта  $V_{Co}''$ . При миграции ионов Со из  $Co_{Li}^{\bullet}$  (антиструктурные дефекты) в  $V_{Co}''$  основными дефектами в структуре LiCoPO<sub>4</sub>, модифицированного ванадием, будут вакансии Li  $(V_{Li})$  и ионы V в позициях Со. Механизм образования этих дефектов может быть представлен следующими уравнениями (в номенклатуре Крёгера-Винка):

$$\operatorname{Li}_{\operatorname{Li}}^{x} \to V_{\operatorname{Li}} + \operatorname{Li}_{\operatorname{i}}^{\bullet} \tag{3}$$

$$\operatorname{Co}_{\operatorname{Co}}^{x} + \operatorname{Li}_{\operatorname{Li}}^{x} \to \operatorname{Li}_{\operatorname{Co}}' + \operatorname{Co}_{\operatorname{Li}}^{\bullet}$$

$$\tag{4}$$

$$1/2V_2O_3 + 3/2Co_{Co}^x \to V_{Co}^{\bullet} + 1/2V_{Co}'' + 3/2CoO (V^{3+} в позициях Co)$$
 (5)

или VO<sub>2</sub> +  $2Co_{Co}^{x} \rightarrow V_{Co}^{\bullet \bullet} + V_{Co}'' + 2CoO (V^{4+} в позициях Co).$ 



(1-y)LiCoPO<sub>4</sub>/yLi<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub> (0≤y≤1).

Положение ионов V в структуре LiCoPO<sub>4</sub> было определено также с помощью ИК спектроскопии. Как следует из рис. 14, ИК спектры композитов (1y)LiCoPO<sub>4</sub>/yLi<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub> ( $0 \le y \le 1$ ) являются суперпозицией полос колебаний LiCoPO<sub>4</sub> и Li<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub>. К сожалению, трудно выявить дополнительные колебания, принадлежащие ионам V в степенях окисления выше 2+, поскольку полосы валентных колебаний V=O в ионах VO<sub>2</sub><sup>+</sup>, которые наблюдаются в диапазоне 900-

(6)

1000 см<sup>-1</sup>, перекрываются с колебаниями PO<sub>4</sub>. Тем не менее, не исключается присутствие ионов V в высоких степенях окисления в структуре допированного LiCoPO<sub>4</sub>. Сходство колебаний группы PO<sub>4</sub> для чистого и допированного LiCoPO<sub>4</sub> доказывает, что ионы V занимают позиции Co, а не P.

Электронное состояние ионов ванадия в синтезированных композитах (1-

y)LiCoPO<sub>4</sub>/yLi<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub> исследовали методом NEXAFS спектроскопии. На рис. 15 показаны спектры поглощения *L*<sub>2,3</sub>-края ванадия для чистого Li<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub>, 0.95LiCoPO<sub>4</sub>/0.05Li<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub> и 0.5LiCoPO<sub>4</sub>/0.5Li<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub>. Так как правила отбора дипольного перехода при поглощении фотонов требуют, чтобы  $\Delta l$ ± 1, основные характеристики в спектрах можно условно присвоить электронному возбуждению со спинорбитальных уровней 2p<sub>3/2</sub> (L<sub>3</sub>-край) и



**Рис. 15.** NEXAFS спектры *L*<sub>2,3</sub>-краев ванадия для Li<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub> (1), 0.95LiCoPO<sub>4</sub>/0.05Li<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub> (2), 0.5LiCoPO<sub>4</sub>/0.5Li<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub> (3) и разностный спектр (2-1).

2p<sub>1/2</sub> (L<sub>2</sub>-край) в пустые или частично занятые 3d-орбитали ванадия. Сложная структура

пиков поглощения означает протекание многоэлектронных процессов. И контур линии, и энергия перехода на краю поглощения, как правило, используются для определения электронного состояния и локальной симметрии поглощающего атома. В частности, два пика  $t_{2g}$  и  $e_g$ , четко различимые в спектре чистого  $\text{Li}_3\text{V}_2(\text{PO}_4)_3$ , характерны для ионов  $\text{V}^{3+}$  в октаэдрической координации. Сдвиг в спектрах композитов  $(1-y)\text{LiCoPO}_4/y\text{Li}_3\text{V}_2(\text{PO}_4)_3$  в сторону больших энергий связи указывает на присутствие ионов V в смешанной степени окисления:  $\text{V}^{3+}$  и  $\text{V}^{4+}$ .

Исходная концентрация элементов в синтезированных композитах подтверждена с

помощью энергодисперсионного спектроскопического микроанализа (EDX). По данным STEM EDX, ионы V, внедренные в структуру LiCoPO<sub>4</sub>, распределены по всему объему композита, в то время как вторая фаза  $Li_{3}V_{2}(PO_{4})_{3}$ , обладающая высокой ионной проводимостью, стабилизируется на поверхности частиц LiCoPO<sub>4</sub>, тем самым, повышая поверхностную подвижность ионов Li и облегчая доставку ионов Li из электролита к грани (010).

При циклировании композитов (1y)LiCoPO<sub>4</sub>/yLi<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub> В диапазоне напряжений 3,0-5,0 В активными являются три окислительно-восстановительные пары:  $V^{3+}/V^{4+}$  и  $V^{4+}/V^{5+}$  (четыре плато ниже 4,6 В) и  $Co^{2+}/Co^{3+}$  (два плато выше 4,6 В) (рис. 16). Профили зарядно-разрядных кривых, окислительноколичество И положение восстановительных пиков для композитов (1y)LiCoPO<sub>4</sub>/yLi<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub> согласуются с литературными данными для чистых фаз. Для характерно  $Li_3V_2(PO_4)_3$ наличие трех окислительных плато около 3,62, 3,70 и 4,09 В





при заряде до 4,3 В и одно дополнительное плато около 4,54 В при заряде до 4,8 В. Они

соответствуют последовательности фазовых превращений  $Li_3V_2(PO_4)_3 \rightarrow Li_{2.5}V_2(PO_4)_3 \rightarrow Li_2V_2(PO_4)_3 \rightarrow U_1V_2(PO_4)_3 \rightarrow V_2(PO_4)_3$ . На зарядной кривой LiCoPO<sub>4</sub> в диапазоне напряжений 3.0-5.0 В присутствуют два плато вследствие двухступенчатого механизма деинтеркаляции лития, связанного с образованием промежуточной фазы Li<sub>0.7</sub>CoPO<sub>4</sub>. На дифференциальной зарядной кривой наблюдаются два соответствующих окислительных пика при 4,78 и 4,87 В. Следует отметить, что, в отличие от твердых растворов LiCo<sub>1-y</sub>Fe<sub>y</sub>PO<sub>4</sub>, потенциалы окислительно-восстановительные пары Co<sup>2+</sup>/Co<sup>3+</sup> в композитах практически не сдвигаются по сравнению с чистым LiCoPO<sub>4</sub>.

На рис. 17 приведены сравнительные зарядно-разрядные профили и кривые dQ/dV от напряжения для LiCoPO<sub>4</sub> и 0.95LiCoPO<sub>4</sub>/0.05Li<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub> при циклировании в диапазонах напряжений 3,0-5,0 В и 4,0-5,0 В. Видно, что при повышении нижнего напряжения до 4,0 В наблюдается значительное повышение обратимости емкости. При этом в обоих случаях на зарядно-разрядных кривых присутствуют два окислительно-восстановительных плато, принадлежащих LiCoPO<sub>4</sub>. Кроме того, при циклировании 0.95LiCoPO<sub>4</sub>/0.05Li<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub> в диапазоне 3,0-5,0 В наблюдаются небольшие окислительно-восстановительные пики при ~ 4,07 В, соответствующие Li<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub>. Однако эти пики исчезают при повышении нижнего напряжения до 4,0 В, указывая на то, что Li<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub> больше не участвует в процессах интеркаляции/деинтеркаляции лития. Тем не менее, присутствие Li<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub> влияет на циклируемость LiCoPO<sub>4</sub> за счет улучшения поверхностной литий-ионной проводимости.



**Рис. 17.** Зарядно-разрядные профили и кривые dQ/dV от напряжения для 0.95LiCoPO<sub>4</sub>/0.05Li<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub> в диапазонах напряжений 3,0-5,0 В (а) и 4,0-5,0 В (б).

Причина улучшения циклируемости катодных материалов на основе LiCoPO<sub>4</sub> в узком диапазоне напряжений не до конца понятна на данный момент. Можно предположить, что это является результатом более высокой стабильности и более высокой проводимости фазы, образующейся при разряде до 4,0 В.

#### выводы

1. Разработана методика твердофазного синтеза с использованием механической активации наноразмерного LiCoPO<sub>4</sub>/C со структурой оливина (ПГС *Pnma*) с использованием различных прекурсоров кобальта. Показано, что при 750°C происходит образование хорошо окристаллизованного продукта с отсутствием нежелательных примесей и наличием электрон-проводящего углеродного покрытия.

2. Изучено влияние изовалентного допирования LiCoPO<sub>4</sub> ионами железа на его структуру, морфологию и электрохимические свойства. Установлено образование непрерывного ряда твердых растворов LiCo<sub>1-y</sub>Fe<sub>y</sub>PO<sub>4</sub> ( $0 \le y \le 1$ ) во всем диапазоне концентраций. Ионы железа находятся в степени окисления 2+ в октаэдрическом окружении.

3. На основании результатов электрохимических измерений сделан вывод, что оптимальными электрохимическими характеристиками обладает состав LiCo<sub>0.5</sub>Fe<sub>0.5</sub>PO<sub>4</sub>. Для данного состава с помощью *in situ* дифракции синхротронного излучения установлено изменение механизма интеркаляции/деинтеркаляции ионов лития от двухфазного, характерного для чистых LiCoPO<sub>4</sub> и LiFePO<sub>4</sub>, на однофазный.

4. Проведено исследование влияния модифицирования LiCoPO<sub>4</sub> ванадием на его структуру, морфологию и электрохимические свойства. Показано, что во всем интервале концентраций ( $0 \le y \le 1$ ) наблюдается образование композитов состава (1-*y*)LiCoPO<sub>4</sub>/*y*Li<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub>. Методом нейтронографии установлено, что, кроме этого, происходит частичное замещение ионов кобальта ионами ванадия в фазе LiCoPO<sub>4</sub> (~ 4 %) и образование вакансий лития. Методом NEXAFS спектроскопии показано, что ионы V в композитах (1-*y*)LiCoPO<sub>4</sub>/*y*Li<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub> находятся в смешанной степени окисления 3+, 4+.

5. По данным циклической хронопотенциометрии установлено, что для композита состава  $0.95 LiCoPO_4/0.05 Li_3V_2(PO_4)_3$  характерна наименьшая потеря емкости в ходе циклирования по сравнению с другими составами. Повышение нижнего предела циклирования от 3,0 В до 4,0 В способствует улучшению циклируемости композита, при этом  $Li_3V_2(PO_4)_3$  способствует улучшению поверхностной литий-ионной подвижности и облегчает доставку ионов Li из электролита к грани (010).

# Основное содержание диссертации опубликовано в работах:

# Статьи, опубликованные в рецензируемых научных журналах:

1. N.V. Kosova, O.A. Podgornova, E.T. Devyatkina, V.R. Podugolnikov, S.A. Petrov. Effect of  $Fe^{2+}$  substitution on the structure and electrochemistry of LiCoPO<sub>4</sub> prepared by mechanochemically assisted carbothermal reduction // J. Materials Chemistry A. – 2014. – V. 2. – P. 20697-20705.

2. О.А. Подгорнова, Н.В. Косова. Структура и электрохимические свойства твердых растворов LiCo<sub>1-y</sub>Fe<sub>y</sub>PO<sub>4</sub> – высоковольтовых катодных материалов для литий-ионных аккумуляторов // Химия в интересах устойчивого развития. – 2014. – Т. 22. – С. 55-61.

3. Н.В. Косова, А.Б. Слободюк, О.А. Подгорнова. Сравнительный структурный анализ LiMPO<sub>4</sub> и Li<sub>2</sub>MPO<sub>4</sub>F (M=Mn, Fe, Co, Ni) по данным РФА, ИК и ЯМР спектроскопии // Журн. Структ. химии. – 2016. – Т. 57. – С. 378-386.

4. N.V. Kosova, O.A. Podgornova, I.A. Bobrikov, V.V. Kaichev, A.V. Bukhtiyarov. Approaching better cycleability of LiCoPO<sub>4</sub> by vanadium modification // Mater. Sci. Eng. B. DOI: 10.1016/j.mseb.2016.04.013.

# Тезисы докладов, представленных на научных конференциях:

1. Подгорнова О.А. LiCoPO<sub>4</sub> – 5В катодный материал для литий-ионных аккумуляторов: синтез, структура, электрохимические свойства // Студент и научнотехнический прогресс. Химия: Тез. докл. 51й Междунар. науч. студ. конф. 12 – 18 апреля 2013 г. – Новосибирск, 2013. – С. 147.

2. Podgornova O.A., Kosova N.V. Structure and electrochemistry of  $LiCo_{1-y}Fe_yPO_4$  solid solutions as high-voltage cathode materials // FBMT 2013: Book of abstract. IV International Conference "Fundamental Bases of Mechanochemical Technologies". June 25 – 28, 2013. – Novosibirsk, 2013 – P. 185.

3. Подгорнова О.А., Косова Н.В. Влияние замещения Co<sup>2+</sup>/Fe<sup>2+</sup> на структуру и электрохимические свойства LiCoPO<sub>4</sub> // Тез. докл. Росс. конф. «Физико-химические проблемы возобновляемой энергетики». 11 – 14 ноября 2013 г. – Санкт-Петербург, 2013 – С. 135.

4. Подгорнова О.А. Влияние катионного замещения на электрохимические свойства LiCoPO<sub>4</sub> // Студент и научно-технический прогресс. Химия: Тез. докл. 52й Междунар. науч. студ. конф. 11–18 апреля 2014 г. – Новосибирск, 2014. – С. 141.

5. Podgornova O.A., Kosova N.V. Effect of Fe and V Doping on Electrochemistry of Nanostructured LiCoPO<sub>4</sub> - High-Voltage Cathode Material // NANO 2014: Book of abstract. XII International conference on nanostructured materials, July 13-18, 2014. – Moscow, 2014. – P. 670.

6. Podgornova O.A., Kosova N.V. Homo- and heterovalent doping of nanostructured LiCoPO<sub>4</sub> // IBA 2016: Book of abstract. International Battery Association, March 20-25, 2016. - Nantes, France, 2016. – P. 147.

#### Благодарности

Автор работы выражает глубокую благодарность своему научному руководителю к.х.н. Н.В. Косовой за руководство, помощь в проведении экспериментальных работ, в анализе и обсуждении полученных результатов. Выражается благодарность к.х.н. Н.В. Булиной (ИХТТМ СО РАН, г. Новосибирск) за съемку дифрактограмм; к.ф.-м.н. И.А. Бобрикову (ОИЯИ, г. Дубна) за регистрацию нейтронограмм и помощь в обработке данных; д.х.н. В.А. Логвиненко (ИНХ СО РАН) за проведение термического анализа; к.х.н. А.А. Матвиенко (ИХТТМ СО РАН, г. Новосибирск) за получение СЭМ микрофотографий; к.ф.-м.н. А.К. Гутаковскому (ИФП СО РАН, г. Новосибирск) за получение ТЭМ микрофотографий; вед. инженеру С.А. Петрову (ИХТТМ СО РАН, г. Новосибирск) за запись и обработку мессбауэровских спектров; к.ф.-м.н. А.Б. Слободюку (Институт химии ДВО РАН, г. Владивосток) за регистрацию и обработку ЯМР спектров; к.ф.-м.н. В.В. Каичеву и к.ф.-м.н. А.В. Бухтиярову (Институт катализа им. Г.К. Борескова СО РАН, г. Новосибирск) за получение данных NEXAFS спектроскопии.